990 resultados para dynamic capabilities
Resumo:
Localisation of both viral and cellular proteins to the nucleolus is determined by a variety of factors including nucleolar localisation signals (NoLSs), but how these signals operate is not clearly understood. The nucleolar trafficking of wild type viral proteins and chimeric proteins, which contain altered NoLSs, were compared to investigate the role of NoLSs in dynamic nucleolar trafficking. Three viral proteins from diverse viruses were selected which localised to the nucleolus; the coronavirus infectious bronchitis virus nucleocapsid (N) protein, the herpesvirus saimiri ORF57 protein and the HIV-1 Rev protein. The chimeric proteins were N protein and ORF57 protein which had their own NoLS replaced with those from ORF57 and Rev proteins, respectively. By analysing the sub-cellular localisation and trafficking of these viral proteins and their chimeras within and between nucleoli using confocal microscopy and photo-bleaching we show that NoLSs are responsible for different nucleolar localisations and trafficking rates.
Resumo:
Solvent induced single-crystal-to-single-crystal transformation has been demonstrated indicating the dynamic behavior of one dimensional arrays obtained from a self-assembled new synthetic cyclic peptide.
Resumo:
Uncatalyzed, ring-opening polymerization of individual macrocyclic poly(arylene thioether ketone)s (1-4) and mixtures (5) under dynamic heating conditions has been demonstrated for the first time. High-molecular-weight, film-forming products were obtained after heating of the macrocycles up to 480 degreesC, with a heating rate of 10-20 degreesC /min. Depending on the macrocyclic structure and heat treatment conditions, the polymers obtained were amorphous or semicrystalline, soluble or slightly crosslinked. NMR analyses of the soluble polymers revealed their linear, highly regular structure. According to NMR, DSC, and TGA studies, the polymers obtained do not contain any residual macrocycles. The polymers with thio-p-arylene moieties in the main chain were thermally stabile. The catalyzed ring opening polymerization of 5 carried out in diphenyl sulfone solution is also reported for comparison. Using quantum mechanical calculations of the ring opening of macrocycles, a reaction mechanism is suggested. Preparation of nanosized poly(thioether ketone) fibrils by a replication method is described.
Resumo:
Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.
Resumo:
This paper discusses experimental and theoretical investigations and Computational Fluid Dynamics (CFD) modelling considerations to evaluate the performance of a square section wind catcher system connected to the top of a test room for the purpose of natural ventilation. The magnitude and distribution of pressure coefficients (C-p) around a wind catcher and the air flow into the test room were analysed. The modelling results indicated that air was supplied into the test room through the wind catcher's quadrants with positive external pressure coefficients and extracted out of the test room through quadrants with negative pressure coefficients. The air flow achieved through the wind catcher depends on the speed and direction of the wind. The results obtained using the explicit and AIDA implicit calculation procedures and CFX code correlate relatively well with the experimental results at lower wind speeds and with wind incidents at an angle of 0 degrees. Variation in the C-p and air flow results were observed particularly with a wind direction of 45 degrees. The explicit and implicit calculation procedures were found to be quick and easy to use in obtaining results whereas the wind tunnel tests were more expensive in terms of effort, cost and time. CFD codes are developing rapidly and are widely available especially with the decreasing prices of computer hardware. However, results obtained using CFD codes must be considered with care, particularly in the absence of empirical data.
The dynamic development and distribution of gas cells in breadmaking dough during proving and baking
Resumo:
Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Second, symbolic expressions and operations are represented by states and transformations in abstract vector spaces. Third, prescribed trajectories through representation space are implemented in neurodynamical systems. We discuss the Amari equation for a neural/dynamic field theory as a special case and show that the kernel construction problem is particularly ill-posed. We suggest a Tikhonov-Hebbian learning method as regularization technique and demonstrate its validity and robustness for basic examples of cognitive computations.
Resumo:
Media content distribution on-demand becomes more complex when performed on a mass scale involving various channels with distinct and dynamic network characteristics, and, deploying a variety of terminal devices offering a wide range of capabilities. It is practically impossible to create and prepackage various static versions of the same content to match all the varying demand parameters of clients for various contexts. In this paper we present a profiling management approach for dynamically personalised media content delivery on-demand integrated with the AXMEDIS Framework. The client profiles comprise the representation of User, Device, Network and Context of content delivery based on MPEG-21:DIA. Although the most challenging proving ground for this personalised content delivery has been the mobile testbed i.e. the distribution to mobile handsets, the framework described here can be deployed for disribution, by the AXMEDIS PnP module, through other channels e.g. satellite, Internet to a range of client terminals e.g. desktops, kiosks, IPtv and other terrminals whose baseline terminal capabilities can be made availabe by the manufacturers as is normal.
Resumo:
This paper investigates the use of really simple syndication (RSS) to dynamically change virtual environments. The case study presented here uses meteorological data downloaded from the Internet in the form of an RSS feed, this data is used to simulate current weather patterns in a virtual environment. The downloaded data is aggregated and interpreted in conjunction with a configuration file, used to associate relevant weather information to the rendering engine. The engine is able to animate a wide range of basic weather patterns. Virtual reality is a way of immersing a user into a different environment, the amount of immersion the user experiences is important. Collaborative virtual reality will benefit from this work by gaining a simple way to incorporate up-to-date RSS feed data into any environment scenario. Instead of simulating weather conditions in training scenarios, actual weather conditions can be incorporated, improving the scenario and immersion.
Resumo:
Researchers at the University of Reading have developed over many years some simple mobile robots that explore an environment they perceive through simple ultrasonic sensors. Information from these sensors has allowed the robots to learn the simple task of moving around while avoiding dynamic obstacles using a static set of fuzzy automata, the choice of which has been criticised, due to its arbitrary nature. This paper considers how a dynamic set of automata can overcome this criticism. In addition, a new reinforcement learning function is outlined which is both scalable to different numbers and types of sensors. The innovations compare successfully with earlier work.