937 resultados para digital narrative mapping
Resumo:
This research seeks to demonstrate the ways in which urban design factors, individually and in various well-considered arrangements, stimulate and encourage social activities in Brisbane’s public squares through the mapping and analysis of user behaviour. No design factors contribute to public space in isolation, so the combinations of different design factors, contextual and social impacts as well as local climate are considered to be highly influential to the way in which Brisbane’s public engages with public space. It is this local distinctiveness that this research seeks to ascertain. The research firstly pinpoints and consolidates the design factors identified and recommended in existing literature and then maps the identified factors as they are observed at case study sites in Brisbane. This is then set against observational mappings of the site’s corresponding user activities and engagement. These mappings identify a number of patterns of behaviour; pertinently that “activated” areas of social gathering actively draw people in, and the busier a space is, both the frequency and duration of people lingering in the space increases. The study finds that simply providing respite from the urban environment (and/or weather conditions) does not adequately encourage social interaction and that people friendly design factors can instigate social activities which, if coexisting in a public space, can themselves draw in further users of the space. One of the primary conclusions drawn from these observations is that members of the public in Brisbane are both actively and passively social and often seek out locations where “people-watching” and being around other members of the public (both categorised as passive social activities) are facilitated and encouraged. Spaces that provide respite from the urban environment but that do not sufficiently accommodate social connections and activities are less favourable and are often left abandoned despite their comparable tranquillity and available space.
Resumo:
Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.
Resumo:
We report the first 3D maps of genetic effects on brain fiber complexity. We analyzed HARDI brain imaging data from 90 young adult twins using an information-theoretic measure, the Jensen-Shannon divergence (JSD), to gauge the regional complexity of the white matter fiber orientation distribution functions (ODF). HARDI data were fluidly registered using Karcher means and ODF square-roots for interpol ation; each subject's JSD map was computed from the spatial coherence of the ODFs in each voxel's neighborhood. We evaluated the genetic influences on generalized fiber anisotropy (GFA) and complexity (JSD) using structural equation models (SEM). At each voxel, genetic and environmental components of data variation were estimated, and their goodness of fit tested by permutation. Color-coded maps revealed that the optimal models varied for different brain regions. Fiber complexity was predominantly under genetic control, and was higher in more highly anisotropic regions. These methods show promise for discovering factors affecting fiber connectivity in the brain.
Resumo:
Despite substantial progress in measuring the anatomical and functional variability of the human brain, little is known about the genetic and environmental causes of these variations. Here we developed an automated system to visualize genetic and environmental effects on brain structure in large brain MRI databases. We applied our multi-template segmentation approach termed "Multi-Atlas Fluid Image Alignment" to fluidly propagate hand-labeled parameterized surface meshes, labeling the lateral ventricles, in 3D volumetric MRI scans of 76 identical (monozygotic, MZ) twins (38 pairs; mean age = 24.6 (SD = 1.7)); and 56 same-sex fraternal (dizygotic, DZ) twins (28 pairs; mean age = 23.0 (SD = 1.8)), scanned as part of a 5-year research study that will eventually study over 1000 subjects. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps, derived from path analysis, revealed patterns of heritability, and their significance, in 3D. Path coefficients for the 'ACE' model that best fitted the data indicated significant contributions from genetic factors (A = 7.3%), common environment (C = 38.9%) and unique environment (E = 53.8%) to lateral ventricular volume. Earlier-maturing occipital horn regions may also be more genetically influenced than later-maturing frontal regions. Maps visualized spatially-varying profiles of environmental versus genetic influences. The approach shows promise for automatically measuring gene-environment effects in large image databases.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles, designed for monitoring degenerative disease effects in clinical neuroscience studies and drug trials. First we used a set of parameterized surfaces to represent the ventricles in a manually labeled set of 9 subjects' MRIs (atlases). We fluidly registered each of these atlases and mesh models to a set of MRIs from 12 Alzheimer's disease (AD) patients and 14 matched healthy elderly subjects, and we averaged the resulting meshes for each of these images. Validation experiments on expert segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease-related alterations monotonically improved as the number of atlases, N, was increased from 1 to 9. We then combined the segmentations with a radial mapping approach to localize ventricular shape differences in patients. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases, and we formulated a statistical stopping criterion to determine the optimal value of N. Anterior horn anomalies in Alzheimer's patients were only detected with the multi-atlas segmentation, which clearly outperformed the standard single-atlas approach.
Resumo:
We propose in this paper a new method for the mapping of hippocampal (HC) surfaces to establish correspondences between points on HC surfaces and enable localized HC shape analysis. A novel geometric feature, the intrinsic shape context, is defined to capture the global characteristics of the HC shapes. Based on this intrinsic feature, an automatic algorithm is developed to detect a set of landmark curves that are stable across population. The direct map between a source and target HC surface is then solved as the minimizer of a harmonic energy function defined on the source surface with landmark constraints. For numerical solutions, we compute the map with the approach of solving partial differential equations on implicit surfaces. The direct mapping method has the following properties: (1) it has the advantage of being automatic; (2) it is invariant to the pose of HC shapes. In our experiments, we apply the direct mapping method to study temporal changes of HC asymmetry in Alzheimer's disease (AD) using HC surfaces from 12 AD patients and 14 normal controls. Our results show that the AD group has a different trend in temporal changes of HC asymmetry than the group of normal controls. We also demonstrate the flexibility of the direct mapping method by applying it to construct spherical maps of HC surfaces. Spherical harmonics (SPHARM) analysis is then applied and it confirms our results on temporal changes of HC asymmetry in AD.
Resumo:
We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 ± 1.9 years) and 14 matched controls (age: 71.4 ± 0.9 years), each scanned twice (2.1 ± 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials.
Resumo:
We recently noticed an error in the demographic data in this article. The validity of the findings and the conclusions of the paper is not affected. However, there is an error in the reported sample size and in the means and standard deviations of the subjects’ ages and MMSE scores. We would like to correct this error, which came to light when we were re-analyzing the data for a meta-analysis. The error occurred because an older version of a spreadsheet was incorrectly used when reporting the sample composition. Instead of examining 12 Alzheimer's disease patients and 14 healthy elderly controls, we in fact examined 17 Alzheimer’s disease patients and 14 healthy elderly controls. All maps and morphometric data reported in the paper are correct, except that the sample size was in fact slightly higher than that originally reported, and the maps computed in the paper were based on the larger sample (which included five more subjects in the Alzheimer’s disease group). All of the maps and figures in the paper are correct, and the conclusions of the paper are unchanged. We apologize for this error, which falls under the sole responsibility of the first author. The corrected demographic information appears below.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.
Resumo:
Creative and ad-hoc work often involves non-digital artifacts, such as whiteboards and post-it notes. The preferred method of brainstorming and idea development, while facilitating work among collocated participants, makes it particularly tricky to involve remote participants, not even mentioning cases where live social involvement is required and the number and location of remote participants can be vast. Our work has originally focused on large distributed teams in business entities. Vast majority of teams in large organizations are distributed teams. Our team of corporate researchers decided to identify state of the art technologies that could facilitate the scenarios mentioned above. This paper is an account of a research project in the area of enterprise collaboration, with a strong focus on the aspects of human computer interaction in mixed mode environments, especially in areas of collaboration where computers still play a secondary role. It is describing a currently running corporate research project. In this paper we signal the potential use of the technology in situation, where community involvement is either required or desirable. The goal of the paper is to initiate a discussion on the use of technologies, initially designed as supporting enterprise collaboration, in situation requiring community engagement. In other words, it is a contribution of technically focused research exploring the uses of the technology in areas such as social engagement and community involvement. © 2012 IEEE.
Resumo:
As patterns of media use become more integrated with mobile technologies and multiple screens, a new mode of viewer engagement has emerged in the form of connected viewing, which allows for an array of new relationships between audiences and media texts in the digital space. This exciting new collection brings together twelve original essays that critically engage with the socially-networked, multi-platform, and cloud-based world of today, examining the connected viewing phenomenon across television, film, video games, and social media. The result is a wide-ranging analysis of shifting business models, policy matters, technological infrastructure, new forms of user engagement, and other key trends affecting screen media in the digital era. Connected Viewing contextualizes the dramatic transformations taking place across both media industries and national contexts, and offers students and scholars alike a diverse set of methods and perspectives for studying this critical moment in media culture.
Resumo:
Distribution Revolution is a collection of interviews with leading film and TV professionals concerning the many ways that digital delivery systems are transforming the entertainment business. These interviews provide lively insider accounts from studio executives, distribution professionals, and creative talent of the tumultuous transformation of film and TV in the digital era. The first section features interviews with top executives at major Hollywood studios, providing a window into the big-picture concerns of media conglomerates with respect to changing business models, revenue streams, and audience behaviors. The second focuses on innovative enterprises that are providing path-breaking models for new modes of content creation, curation, and distribution—creatively meshing the strategies and practices of Hollywood and Silicon Valley. And the final section offers insights from creative talent whose professional practices, compensation, and everyday working conditions have been transformed over the past ten years. Taken together, these interviews demonstrate that virtually every aspect of the film and television businesses is being affected by the digital distribution revolution, a revolution that has likely just begun. Interviewees include: • Gary Newman, Chairman, 20th Century Fox Television • Kelly Summers, Former Vice President, Global Business Development and New Media Strategy, Walt Disney Studios • Thomas Gewecke, Chief Digital Officer and Executive Vice President, Strategy and Business Development, Warner Bros. Entertainment • Ted Sarandos, Chief Content Officer, Netflix • Felicia D. Henderson, Writer-Producer, Soul Food, Gossip Girl • Dick Wolf, Executive Producer and Creator, Law & Order
Resumo:
This paper critically analyzes the divergent perspectives on how copyright and intellectual property laws impact creativity, innovation, and the creative industries. One perspective defines the creative industries based on copyright as the means by which revenues are generated from innovation and the dissemination of new ideas. At the same time, it has been argued that copyright and intellectual property regimes fetter creativity and innovation, and that this has become even more marked in the context of digital media convergence and the networked global creative economy. These issues have resonated in debates around the creative industries, particularly since the initial DCMS mapping study in the UK in 1998 defined creative industries as combining individual creativity and exploitable forms of intellectual property. The issue of competing claims for the relationship between copyright and the creative industries has also arisen in Australia, with a report by the Australian Law Reform Commission entitled Copyright and the Digital Economy. This paper will consider the competing claims surrounding copyright and the creative industries, and the implications for policy-makers internationally.
Resumo:
This paper uses Deleuze and Guattari's concept of faciality to analyse the teacher's face. According to Deleuze and Guattari, the teacher-face is a special type of face because it is an 'overcoded' face produced in specific landscapes. This paper suggests four limit-faces for teacher faciality that actualise different mixes of signifiance and subjectification in a classroom in which individualisation and massifications are affected. Understanding these limit-faces suggests new ways to conceive the affects actualised in the classroom that are subjected to increasing levels of surveillance from education policy makers. Through this ‘partial mapping’ new possibilities emerge to “escape the face”.