991 resultados para density functional


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactions that can damage DNA have been simulated using a combination of molecular dynamics and density functional theory. In particular, the damage caused by the attachment of a low energy electron to the nucleobase. Simulations of anionic single nucleotides of DNA in an aqueous environment that was modeled explicitly have been performed. This has allowed us to examine the role played by the water molecules that surround the DNA in radiation damage mechanisms. Our simulations show that hydrogen bonding and protonation of the nucleotide by the water can have a significant effect on the barriers to strand breaking reactions. Furthermore, these effects are not the same for all four of the bases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent experimental investigation (Kim et al. J. Catal. 306 (2013) 146-154) on the selective hydrogenation of acetylene over Pd nanoparticles with different shapes concluded that Pd(100) showed higher activity and selectivity than Pd(111) for acetylene hydrogenation. However, our recent density functional calculations (Yang et al. J. Catal. 305 (2013) 264-276) observed that the clean Pd(111) surface should result in higher activity and ethylene selectivity compared with the clean Pd(100) surface for acetylene hydrogenation. In the current work, using density functional theory calculations, we find that Pd(100) in the carbide form gives rise to higher activity and selectivity than Pd(111) carbide. These results indicate that the catalyst surface is most likely in the carbide form under the experimental reaction conditions. Furthermore, the adsorption energies of hydrogen atoms as a function of the hydrogen coverage at the surface and subsurface sites over Pd(100) are compared with those over Pd(111), and it is found that the adsorption of hydrogen atoms is always less favoured on Pd(100) over the whole coverage range. This suggests that the Pd(100) hydride surface will be less stable than the Pd(111) hydride surface, which is also in accordance with the experimental results reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Ultimately, it is this negative charge which gives rise to the barrier for ion transport at the grain boundary

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca2+ ions in C-S-H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for 90Sr storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over recent years, ionic liquids have emerged as a class of novel fluids that have inspired the development of a number of new products and processes. The ability to design these materials with specific functionalities and properties means that they are highly relevant to the growing philosophy of chemical-product design. This is particularly appropriate in the context of a chemical industry that is becoming increasingly focussed on small-volume, high-value added products with relatively short times to market. To support such product and process development, a number of tools can be utilised. A key requirement is that the tool can predict the physical properties and activity coefficients of multi-component mixtures and, if required, model the process in which the materials will be used. Multi-scale simulations that span density functional theory (DFT) to process-engineering computations can address the relevant time and length scales and have increased in usage with the availability of cheap and powerful computers. Herein we will discuss the area of engineering calculations relating to the design of ionic liquid processes, that is, the computational tools that bridge this gap and allow for process simulation tools to utilise and assist in the design of ionic liquids. It will be shown that, at present, it is possible to use available tools to estimate many important properties of ionic liquids and mixtures containing them with a sufficient level of accuracy for preliminary design and selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reduction of CO2 on copper electrodes has attracted great attentions in the last decades, since it provides a sustainable approach for energy restore. During the CO2 reduction process, the electron transfer to COads is experimentally suggested to be the crucial step. In this work, we examine two possible pathways in CO activation, i.e. to generate COHads and CHOads, respectively, by performing the state-of-the-art constrained ab initio molecular dynamics simulations on the charged Cu(100) electrode under aqueous conditions, which is close to the realistic electrochemical condition. The free energy profile in the formation of COHads via the coupled proton and electron transfer is plotted. Furthermore, by Bader charge analyses, a linear relationship between C-O bond distance and the negative charge in CO fragment is unveiled. The formation of CHOads is identified to be a surface catalytic reaction, which requires the adsorption of H atom on the surface first. By comparing these two pathways, we demonstrate that kinetically the formation of COHads is more favored than that of CHOads, while CHOads is thermodynamically more stable. This work reveals that CO activation via COHads intermediate is an important pathway in electrocatalysis, which could provide some insights into CO2 electroreduction over Cu electrodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-order-harmonic generation in benzene is studied using a mixed quantum-classical approach in which the electrons are described using time-dependent density functional theory while the ions move classically. The interaction with both linearly and circularly polarised infra-red ($\lambda = 800$ nm) laser pulses of duration 10 cycles (26.7 fs) is considered. The effect of allowing the ions to move is investigated as is the effect of including self-interaction corrections to the exchange-correlation functional. Our results for circularly polarised pulses are compared with previous calculations in which the ions were kept fixed and self-interaction corrections were not included while our results for linearly polarised pulses are compared with both previous calculations and experiment. We find that even for the short duration pulses considered here, the ionic motion greatly influences the harmonic spectra. While ionization and ionic displacements are greatest when linearly polarised pulses are used, the response to circularly polarised pulses is almost comparable, in agreement with previous experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents the results of perturbed angular correlation (PAC) experiments , an experimental technique which measures the hyperfine interaction at probes (radioactive ions implanted in the materials to study), from which one infers local information on an atomic scale. Furthermore, abinitio calculations using density functional theory electronic obtain results that directly complement the experiments, and are also used for theoretical research. These methods were applied in two families of materials. The manganites, with the possible existence of magnetic, charge, orbital and ferroelectric orders, are of fundamental and technological interest. The experimental results are obtained in the alkaline-earth manganites (Ca, Ba, Sr), with special interest due to the structural variety of possible polymorphs. With probes of Cd and In the stability of the probe and its location in a wide temperature range is established and a comparison with calculations allows the physical interpretation of the results. Calculations of hyperfine properties in rare-earth manganites are also presented. The second type of materials in which hyperfine properties were studied are the Manganese pnictides: MnAs, MnSb, and MnBi, compounds in which magnetism is fundamental. The experimental results obtained mainly consider the MnAs compound, whose magneto-structural transition is of great interest. The transition is analyzed in detail with the local resolution characteristic of the technique, obtaining information of the character of the transition also with complementary, more conventional techniques. The last work in this thesis uses only the first principles calculations, continuing the theme of the hyperfine interactions, but this time with respect to ferroelectrics. Several transition metal oxides with perovskite or distorted structures are considered. The electric field gradient which exists due to the quadrupole interaction in nuclei is related to the spontaneous electric polarization, the main quantity measured in ferroelectrics. This study provides a fundamental theoretical basis for previous empirical studies, suggesting new directions for research in ferroelectrics and multiferroics using techniques which measure the electric field gradient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ruthenium(II)-cymene complexes [Ru(eta(6)-cymene)(bha)Cl] with substituted halogenobenzohydroxamato (bha) ligands (substituents = 4-F, 4-Cl, 4-Br, 2,4-F-2, 3,4-F-2, 2,5-F-2, 2,6-F-2) have been synthesized and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, cyclic voltammetry and controlled-potential electrolysis, and density functional theory (DFT) studies. The compositions of their frontier molecular orbitals (MOs) were established by DFT calculations, and the oxidation and reduction potentials are shown to follow the orders of the estimated vertical ionization potential and electron affinity, respectively. The electrochemical E-L Lever parameter is estimated for the first time for the various bha ligands, which can thus be ordered according to their electron-donor character. All complexes exhibit very strong protein tyrosine kinase (PTK) inhibitory activity, even much higher than that of genistein, the clinically used PTK inhibitory drug. The complex containing the 2,4-difluorobenzohydroxamato ligand is the most active one, and the dependences of the PTK activity of the complexes and of their redox potentials on the ring substituents are discussed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of mono(eta(5)-cyclopentadienyl)metal-(II) complexes with nitro-substituted thienyl acetylide ligands of general formula [M(eta(5)-C5H5)(L)(C C{C4H2S}(n)NO2)] (M = Fe, L = kappa(2)-DPPE, n = 1,2; M = Ru, L = kappa(2)-DPPE, 2 PPh3, n = 1, 2; M = Ni, L = PPh3, n = 1, 2) has been synthesized and fully characterized by NMR, FT-IR, and UV-Vis spectroscopy. The electrochemical behavior of the complexes was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at 1500 nm. The effect of donor abilities of different organometallic fragments on the quadratic hyperpolarizabilities was studied and correlated with spectroscopic and electrochemical data. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were employed to get a better understanding of the second-order nonlinear optical properties in these complexes. In this series, the complexity of the push pull systems is revealed; even so, several trends in the second-order hyperpolarizability can still be recognized. In particular, the overall data seem to indicate that the existence of other electronic transitions in addition to the main MLCT clearly controls the effectiveness of the organometallic donor ability on the second-order NLO properties of these push pull systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New density functionals representing the exchange and correlation energies (per electron) are employed, based on the electron gas model, to calculate interaction potentials of noble gas systems X2 and XY, where X (and Y) are He,Ne,Ar and Kr, and of hydrogen atomrare gas systems H-X. The exchange energy density functional is that recommended by Handler and the correlation energy density functional is a rational function involving two parameters which were optimized to reproduce the correlation energy of He atom. Application of the two parameter function to other rare gas atoms shows that it is "universal"; i. e. ,accurate for the systems considered. The potentials obtained in this work compare well with recent experimental results and are a significant improvement over those from competing statistical modelS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of theory to understand and facilitate catalytic enantioselective organic transformations involving copper and hydrobenzoin derivatives is reported. Section A details the use of theory to predict, facilitate, and understand a copper promoted amino oxygenation reaction reported by Chemler et al. Using Density Functional Theory (DFT), employing the hybrid B3LYP functional and a LanL2DZ/6-31G(d) basis set, the mechanistic details were studied on a N-tosyl-o-allylaniline and a [alpha]-methyl-[gamma]-alkenyl sulfonamide substrate. The results suggest the N-C bond formation proceeds via a cisaminocupration, and not through a radical-type mechanism. Additionally, the origin of diastereoselection observed with [alpha]-methyl-[gamma]-alkenyl sulfonamide arises from avoidance of unfavourable steric interactions between the methyl substituent and the N -protecting group. Section B details the computationally guided, experimental investigation of two hydrobenzoin derivatives as ligands/ catalysts, as well as the attempted synthesis of a third hydrobenzoin derivative. The bis-boronic acid derived from hydrobenzoin was successful as a Lewis acid catalyst in the Bignielli reaction and the Conia ene reaction, but provided only racemic products. The chiral diol derived from hydrobenzoin successfully increased the rate of the addition of diethyl zinc to benzaldehyde in the presence of titanium tetraisopropoxide, however poor enantioinduction was obseverved. Notably, the observed reactivity was successfully predicted by theoretical calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.