965 resultados para crustin-like gene
Resumo:
Numerous invertebrate species form long lasting symbioses with bacteria (Buchner, 1949; Buchner, 1965). One of the most common of these bacterial symbionts is Wolbachia pipientis, which has been estimated to infect anywhere from 15–75% of all insect species (Werren et al., 1995a; West et al., 1998; Jeyaprakash and Hoy, 2000; Werren and Windsor, 2000) as well as many species of arachnids, terrestrial crustaceans and filarial nematodes (O’Neill et al., 1997a; Bandi et al., 1998). In most arthropod associations, Wolbachia act as reproductive parasites manipulating the reproduction of their hosts to enhance their own vertical transmission. There appears to be little direct fitness cost to the infected host besides the costs arising from the reproductive manipulations. However instances have been reported where Wolbachia can be either deleterious (Min and Benzer, 1997; Bouchon et al., 1998) or beneficial (Girin and Boultreau, 1995; Stolk and Stouthamer, 1995; Wade and Chang, 1995; Vavre et al., 1999b; Dedeine et al., 2001) to their hosts. Wolbachia were first described as intracellular Rickettsia-like organisms (RLOs), infecting the gonad cells of the mosquito, Culex pipiens (Hertig and Wolbach, 1924), and were later named 'Wolbachia pipientis' (Hertig, 1936). It was not until the work of Yen and Barr (Yen and Barr, 1971; Yen and Barr, 1973) that Wolbachia were implicated in causing crossing incompatibilities between different mosquito populations (Laven, 1951; Ghelelovitch, 1952). When polymerase chain reaction (PCR) diagnostics for Wolbachia became available, it became clear that this agent was both extremely widespread and also responsible for a range of different reproductive phenotypes in the different hosts it infected (O’Neill et al., 1992; Rousset et al., 1992; Stouthamer et al., 1993). The most common of these are cytoplasmic incompatibility, inducing parthenogenesis, overriding host sex-determination, and male-killing (O’Neill et al., 1997a). As of the time of this writing, more than 450 different Wolbachia strains with unique gene sequences, different phenotypes, and infecting different hosts have been deposited in GenBank and the Wolbachia host database (http://www.wolbachia.sols. uq.edu.au).
Resumo:
A spotted fever-like rickettsia was identified in a Hemaphysalis tick by polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA, ompA, and ompB genes. A comparison of these nucleotide sequences with those of other spotted fever group (SFG) rickettsiae revealed that the Hemaphysalis tick rickettsia was distinct from other previously reported strains. Phylogenetic analysis based on both ompA and ompB also indicates that the strain’s closest relatives are the agents of Thai tick typhus (Rickettsia honei strain TT-118) and Flinders Island spotted fever (R. honei). This study represents the first report of an R. honei-like agent from a Hemaphysalis tick in Australia and of a spotted fever group rickettsia from Cape York Peninsula, Queensland.
Resumo:
Wolbachia are maternally inherited intracellular bacteria that infect a wide range of arthropods and nematodes and are associated with various reproductive abnormalities in their hosts. Insect-associated Wolbachia form a monophyletic clade in the α-Proteobacteria and recently have been separated into two supergroups (A and B) and 19 groups. Our recent polymerase chain reaction (PCR) survey using wsp specific primers indicated that various strains of Wolbachia were present in mosquitoes collected from Southeast Asia. Here, we report the phylogenetic relationship of the Wolbachia strains found in these mosquitoes using wsp gene sequences. Our phylogenetic analysis revealed eight new Wolbachia strains, five in the A supergroup and three in the B supergroup. Most of the Wolbachia strains present in Southeast Asian mosquitoes belong to the established Mors, Con, and Pip groups.
Resumo:
Ticks affect human and animal health both directly by their blood feeding and indirectly by transmission of many disease-causing bacteria, such as Rickettsia, Ehrlichia, Borrelia, Coxiella, Cowdria, Anaplasma, Aegyptionella, and Tularemia, as well as many viruses (Piesman and Gage, 1996). In addition to these infectious agents, ticks harbor bacterial endosymbionts, such as Wolbachia persica, which was first isolated from the soft tick now classified as Argus arboreus (Suitor and Weiss, 1961).
Resumo:
Wolbachia endosymbiotic bacteria are widespread in arthropods and are also present in filarial nematodes. Almost all filarial species so far examined have been found to harbor these endosymbionts. The sequences of only three genes have been published for nematode Wolbachia (i.e., the genes coding for the proteins FtsZ and catalase and for 16S rRNA). Here we present the sequences of the genes coding for the Wolbachia surface protein (WSP) from the endosymbionts of eight species of filaria. Complete gene sequences were obtained from the endosymbionts of two different species, Dirofilaria immitis and Brugia malayi. These sequences allowed us to design general primers for amplification of the wsp gene from the Wolbachia of all filarial species examined. For these species, partial WSP sequences (about 600 base pairs) were obtained with these primers. Phylogenetic analysis groups these nematode wsp sequences into a coherent cluster. Within the nematode cluster, wsp-based Wolbachia phylogeny matches a previous phylogeny obtained with ftsZ gene sequences, with a good consistency of the phylogeny of hosts (nematodes) and symbionts (Wolbachia). In addition, different individuals of the same host species (Dirofilaria immitis and Wuchereria bancrofti) show identical wsp gene sequences.
Resumo:
The dnaA region of Wolbachia, an intracellular bacterial parasite of insects, is unique. A glnA cognate was found upstream of the dnaA gene, while neither of the two open reading frames detected downstream of dnaA has any homologue in the database. This unusual gene arrangement may reflect requirements associated with the unique ecological niche this agent occupies.
Resumo:
The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we report on (i) the purification of one of the most abundantly expressed Wolbachia proteins from infected Drosophila eggs and (ii) the subsequent cloning and characterization of the gene (wsp) that encodes it. The functionality of the wsp promoter region was also successfully tested in Escherichia coli. Comparison of sequences of this gene from different strains of Wolbachia revealed a high level of variability. This sequence variation correlated with the ability of certain Wolbachia strains to induce or rescue the cytoplasmic incompatibility phenotype in infected insects. As such, this gene will be a very useful tool for Wolbachia strain typing and phylogenetic analysis, as well as understanding the molecular basis of the interaction of Wolbachia with its host.
Resumo:
In the context of cancer diagnosis and treatment, we consider the problem of constructing an accurate prediction rule on the basis of a relatively small number of tumor tissue samples of known type containing the expression data on very many (possibly thousands) genes. Recently, results have been presented in the literature suggesting that it is possible to construct a prediction rule from only a few genes such that it has a negligible prediction error rate. However, in these results the test error or the leave-one-out cross-validated error is calculated without allowance for the selection bias. There is no allowance because the rule is either tested on tissue samples that were used in the first instance to select the genes being used in the rule or because the cross-validation of the rule is not external to the selection process; that is, gene selection is not performed in training the rule at each stage of the cross-validation process. We describe how in practice the selection bias can be assessed and corrected for by either performing a cross-validation or applying the bootstrap external to the selection process. We recommend using 10-fold rather than leave-one-out cross-validation, and concerning the bootstrap, we suggest using the so-called. 632+ bootstrap error estimate designed to handle overfitted prediction rules. Using two published data sets, we demonstrate that when correction is made for the selection bias, the cross-validated error is no longer zero for a subset of only a few genes.
Resumo:
To evaluate an antigen delivery system in which exogenous antigen can target the major histocompatibility complex (MHC) class I pathway, a single human papillomavirus (HPV) 16 E7 cytotoxic T lymphocyte (CTL) epitope and a single HIV gp160 CTL epitope were separately fused to the C-terminus or bovine papillomavirus 1 (BPV1) L1 sequence to form hybrid BPV1L1 VLPs. Mice immunized with these hybrid VLPs mounted strong CTL responses against the relevant target cells in the absence of any adjuvants. In addition, the CTL responses induced by immunization with BPV1L1/HPV16E7CTL VLPs protected mice against challenge with E7-transformed tumor cells. Furthermore, a high titer-specific antibody response against BPV1L1 VLPs was also induced, and this antiserum could inhibit papillomavirus-induced agglutination of mouse erythrocytes, suggesting that the antibody may recognize conformational determinates relevant to virus neutralization. These data demonstrate that hybrid BPV1L1 VLPs can be used as carriers to target antigenic epitopes to both the MHC class I and class II pathways, providing a promising strategy for the design of vaccines to prevent virus infection, with the potential to elicit therapeutic virus-specific CTL responses. (C) 1998 Academic Press.
Resumo:
Background In familial hyperaldosteronism type I (FH-I), glucocorticoid treatment suppresses adrenocorticotrophic hormone-regulated hybrid gene expression and corrects hyperaldosteronism. Objective To determine whether the wild-type aldosterone synthase genes, thereby released from chronic suppression, are capable of functioning normally. Methods We compared mid-morning levels of plasma potassium, plasma aldosterone, plasma renin activity (PRA) and aldosterone : PRA ratios, measured with patients in an upright position, and responsiveness of aldosterone levels to infusion of angiotensin II (AII), for 11 patients with FH-I before and during long-term (0.8-14.3 years) treatment with 0.25-0.75 mg/day dexamethasone or 2.5-10 mg/day prednisolone. Results During glucocorticoid treatment, hypertension was corrected in all. Potassium levels, which had been low (< 3.5 mmol/l) in two patients before treatment, were normal in all during treatment (mean 4.0 +/- 0.1 mmol/l, range 3.5-4.6). Aldosterone levels during treatment [13.2 +/- 2.1 ng/100 ml (mean +/- SEM)] were lower than those before treatment (20.1 +/- 2.5 ng/100 ml, P < 0.05). PRA levels, which had been suppressed before treatment (0.5 +/- 0.2 ng/ml per h), were unsuppressed during treatment (5.1 +/- 1.5 ng/ml per h, P < 0.01) and elevated (> 4 ng/ml per h) in six patients. Aldosterone : PRA ratios, which had been elevated (> 30) before treatment (101.1 +/- 25.9), were much lower during treatment (4.1 +/- 1.0, P < 0.005) and below normal (< 5) in eight patients. Surprisingly, aldosterone level, which had not been responsive (< 50% rise) to infusion of AII for all 11 patients before treatment, remained unresponsive for 10 during treatment. Conclusions Apparently regardless of duration of glucocorticoid treatment in FH-I, aldosterone level remains poorly responsive to AII, with a higher than normal PRA and a low aldosterone : PRA ratio. This is consistent with there being a persistent defect in functioning of wild-type aldosterone synthase gene. (C) Rapid Science Publishers ISSN 0263-6352.
Resumo:
We have screened the hydroxymethylbilane synthase cDNAs of 3 patients from 2 families suffering from acute intermittent porphyria (AIP) from Scotland and South Africa using heteroduplex and chemical cleavage of mismatch analyses, Direct sequencing was used to characterise the mutations, The two novel mutations identified were a missense mutation at nucleotide position 64 in exon 3 (R22C) and a single base-pair deletion in exon 15, These mutations are predicted to affect the normal function of the enzyme and, therefore, are expected to be the primary cause of disease in these patients.
Resumo:
The nifH gene sequence of the nitrogen-fixing bacterium Acetobacter diazotrophicus was determined with the use of the polymerase chain reaction and universal degenerate oligonucleotide primers. The gene shows highest pair-wise similarity to the nifH gene of Azospirillum brasilense. The phylogenetic relationships of the nifH gene sequences were compared with those inferred from 16S rRNA gene sequences. Knowledge of the sequence of the nifH gene contributes to the growing database of nifH gene sequences, and will allow the detection of Acet. diazotrophicus from environmental samples with nifH gene-based primers.
Resumo:
Patterns of population subdivision and the relationship between gene flow and geographical distance in the tropical estuarine fish Lares calcarifer (Centropomidae) were investigated using mtDNA control region sequences. Sixty-three putative haplotypes were resolved from a total of 270 individuals from nine localities within three geographical regions spanning the north Australian coastline. Despite a continuous estuarine distribution throughout the sampled range, no haplotypes were shared among regions. However, within regions, common haplotypes were often shared among localities. Both sequence-based (average Phi(ST)=0.328) and haplotype-based (average Phi(ST)=0.182) population subdivision analyses indicated strong geographical structuring. Depending on the method of calculation, geographical distance explained either 79 per cent (sequence-based) or 23 per cent (haplotype-based) of the variation in mitochondrial gene flow. Such relationships suggest that genetic differentiation of L. calcarifer has been generated via isolation-by-distance, possibly in a stepping-stone fashion. This pattern of genetic structure is concordant with expectations based on the life history of L. calcarifer and direct studies of its dispersal patterns. Mitochondrial DNA variation, although generally in agreement with patterns of allozyme variation, detected population subdivision at smaller spatial scales. Our analysis of mtDNA variation in L. calcarifer confirms that population genetic models can detect population structure of not only evolutionary significance but also of demographic significance. Further, it demonstrates the power of inferring such structure from hypervariable markers, which correspond to small effective population sizes.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.