983 resultados para corrections atmosphériques
Resumo:
Residential dissonance refers to the mismatch in land-use patterns between individuals’ preferred residential neighbourhood type and the type of neighbourhood in which they currently reside. Current knowledge regarding the impact of residential dissonance is limited to short-term travel behaviours in urban vs. suburban, and rural vs. urban areas. Although the prevailing view is that dissonants adjust their orientation and lifestyle around their surrounding land use over time, empirical evidence is lacking to support this proposition. This research identifies both short-term mode choice behaviour and medium-term mode shift behaviour of dissonants in transit oriented development (TODs) vs. non-TOD areas in Brisbane, Australia. Natural groupings of neighbourhood profiles (e.g. residential density, land use diversity, intersection density, cul-de-sac density, and public transport accessibility levels) of 3957 individuals were identified as living either in a TOD (510 individuals) or non-TOD (3447 individuals) areas in Brisbane using the TwoStep cluster analysis technique. Levels of dissonance were measured based on a factor analysis of 16 items representing the travel attitudes/preferences of individuals. Two multinomial logistic (MNL) regression models were estimated to understand mode choice behaviour of (1) TOD dissonants, and (2) non-TOD dissonants in 2009, controlling for socio-demographics and environmental characteristics. Two additional MNL regression models were estimated to investigate mode shift behaviour of (3) TOD dissonants, and (4) non-TOD dissonants between 2009 and 2011, also controlling for socio-demographic, changes in socio-demographic, and built environmental factors. The findings suggest that travel preference is relatively more influential in transport mode choice decisions compared with built environment features. Little behavioural evidence was found to support the adjustment of a dissonant orientation toward a particular land use feature and mode accessibility they represent (e.g. a modal shift to greater use of the car for non-TOD dissonants). TOD policies should focus on reducing the level of dissonance in TODs in order to enhance transit ridership.
Resumo:
Materials used in the engineering always contain imperfections or defects which significantly affect their performances. Based on the large-scale molecular dynamics simulation and the Euler–Bernoulli beam theory, the influence from different pre-existing surface defects on the bending properties of Ag nanowires (NWs) is studied in this paper. It is found that the nonlinear-elastic deformation, as well as the flexural rigidity of the NW is insensitive to different surface defects for the studied defects in this paper. On the contrary, an evident decrease of the yield strength is observed due to the existence of defects. In-depth inspection of the deformation process reveals that, at the onset of plastic deformation, dislocation embryos initiate from the locations of surface defects, and the plastic deformation is dominated by the nucleation and propagation of partial dislocations under the considered temperature. Particularly, the generation of stair-rod partial dislocations and Lomer–Cottrell lock are normally observed for both perfect and defected NWs. The generation of these structures has thwarted attempts of the NW to an early yielding, which leads to the phenomenon that more defects does not necessarily mean a lower critical force.
Resumo:
Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the roles of GEF-H1 (Guanine-nucleotide exchange factor-H1)-RhoA signalling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 (Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of p38 was essential for the GEF-H1-RhoA signalling pathway to induce NF-κB transactivation and IL-8 synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway.
Resumo:
Automated crowd counting has become an active field of computer vision research in recent years. Existing approaches are scene-specific, as they are designed to operate in the single camera viewpoint that was used to train the system. Real world camera networks often span multiple viewpoints within a facility, including many regions of overlap. This paper proposes a novel scene invariant crowd counting algorithm that is designed to operate across multiple cameras. The approach uses camera calibration to normalise features between viewpoints and to compensate for regions of overlap. This compensation is performed by constructing an 'overlap map' which provides a measure of how much an object at one location is visible within other viewpoints. An investigation into the suitability of various feature types and regression models for scene invariant crowd counting is also conducted. The features investigated include object size, shape, edges and keypoints. The regression models evaluated include neural networks, K-nearest neighbours, linear and Gaussian process regresion. Our experiments demonstrate that accurate crowd counting was achieved across seven benchmark datasets, with optimal performance observed when all features were used and when Gaussian process regression was used. The combination of scene invariance and multi camera crowd counting is evaluated by training the system on footage obtained from the QUT camera network and testing it on three cameras from the PETS 2009 database. Highly accurate crowd counting was observed with a mean relative error of less than 10%. Our approach enables a pre-trained system to be deployed on a new environment without any additional training, bringing the field one step closer toward a 'plug and play' system.
Resumo:
The addition of surface tension to the classical Stefan problem for melting a sphere causes the solution to blow up at a finite time before complete melting takes place. This singular behaviour is characterised by the speed of the solid-melt interface and the flux of heat at the interface both becoming unbounded in the blow-up limit. In this paper, we use numerical simulation for a particular energy-conserving one-phase version of the problem to show that kinetic undercooling regularises this blow-up, so that the model with both surface tension and kinetic undercooling has solutions that are regular right up to complete melting. By examining the regime in which the dimensionless kinetic undercooling parameter is small, our results demonstrate how physically realistic solutions to this Stefan problem are consistent with observations of abrupt melting of nanoscaled particles.
Resumo:
The growth of graphene on SiC/Si substrates is an appealing alternative to the growth on bulk SiC for cost reduction and to better integrate the material with Si based electronic devices. In this paper, we present a complete in-situ study of the growth of epitaxial graphene on 3C SiC (111)/Si (111) substrates via high temperature annealing (ranging from 1125˚C to 1375˚C) in ultra high vacuum (UHV). The quality and number of graphene layers have been thoroughly investigated by using x-ray photoelectron spectroscopy (XPS), while the surface characterization have been studied by scanning tunnelling microscopy (STM). Ex-situ Raman spectroscopy measurements confirm our findings, which demonstrate the exponential dependence of the number of graphene layer from the annealing temperature.
Resumo:
Previous research into the potential ‘dark’ side of trait emotional intelligence (EI) has repeatedly demonstrated that trait EI is negatively associated with Machiavellianism. In this study, we reassess the potential dark side of trait EI, by testing whether Agreeableness mediates and/or moderates the relationship between trait EI and Machiavellianism. Hypothesized mediation and moderation effects were tested using a large sample of 884 workers who completed several self-report questionnaires. Results provide support for both hypotheses; Agreeableness was found to mediate and moderate the relationship between trait EI and Machiavellianism. Overall, results indicate that individuals high in trait EI tend to have low levels of Machiavellianism because they generally have a positive nature (i.e. are agreeable) and not because they are emotionally competent per se. Results also indicate that individuals high in ‘perceived emotional competence’ have the potential to be high in Machiavellianism, particularly when they are low in Agreeableness.
Resumo:
Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.
Resumo:
This article presents the first narrative analysis of the areas of research that have developed within the destination marketing field since its commencement in 1973. Given the broad extent of the field, and the absence of any previous reviews in four decades, a key challenge is in providing a focus for such a disparate body of knowledge. The review is structured around one principal question: ‘To what extent is the Destination Marketing Organisation (DMO) responsible for the competitiveness of the destination’? In pursuit of this underlying question, we address a number of themes including nomenclature and the DMO, the evolution of the destination marketing literature, competitiveness as the DMO reason d’être, and DMO effectiveness including issues of branding and positioning, and future research themes in the field.
Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces
Resumo:
Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon has gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150µm compared to particles <150µm. As particle size reduces below 150µm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption.
Resumo:
In the recent manuscript published by Egodawatta et al. (2013), the authors investigated the build-up process of heavy metals (HMs) associated with road-deposited sediment (RDS) on residential road surfaces, and presented empirical models for the prediction of both the surface loads and build-up rates of HMs on these surfaces...
Resumo:
Mathematical descriptions of birth–death–movement processes are often calibrated to measurements from cell biology experiments to quantify tissue growth rates. Here we describe and analyze a discrete model of a birth–death-movement process applied to a typical two–dimensional cell biology experiment. We present three different descriptions of the system: (i) a standard mean–field description which neglects correlation effects and clustering; (ii) a moment dynamics description which approximately incorporates correlation and clustering effects, and; (iii) averaged data from repeated discrete simulations which directly incorporates correlation and clustering effects. Comparing these three descriptions indicates that the mean–field and moment dynamics approaches are valid only for certain parameter regimes, and that both these descriptions fail to make accurate predictions of the system for sufficiently fast birth and death rates where the effects of spatial correlations and clustering are sufficiently strong. Without any method to distinguish between the parameter regimes where these three descriptions are valid, it is possible that either the mean–field or moment dynamics model could be calibrated to experimental data under inappropriate conditions, leading to errors in parameter estimation. In this work we demonstrate that a simple measurement of agent clustering and correlation, based on coordination number data, provides an indirect measure of agent correlation and clustering effects, and can therefore be used to make a distinction between the validity of the different descriptions of the birth–death–movement process.
Resumo:
Solution chemistry plays a significant role in the rate and type of foulant formed on heated industrial surfaces. This paper describes the effect of sucrose, silica (SiO2), Ca2+ and Mg2+ ions, and trans-aconitic acid on the kinetics and solubility of SiO2 and calcium oxalate monohydrate (COM) in mixed salt solutions containing sucrose and refines models previously proposed. The developed SiO2 models show that sucrose and SiO2 concentrations are the main parameters that determine apparent order (n) and apparent rate of reaction (k) and SiO2 solubility over a 24 h period. The calcium oxalate solubility model shows that while increasing [Mg2+] increases COM solubility, the reverse is so with increasing sucrose concentrations. The role of solution species on COM crystal habit is discussed and the appearance of the uncommon (001) face is explained.
Resumo:
A large subsurface, elevated temperature anomaly is well documented in Central Australia. High Heat Producing Granites (HHPGs) intersected by drilling at Innamincka are often assumed to be the dominant cause of the elevated subsurface temperatures, although their presence in other parts of the temperature anomaly has not been confirmed. Geological controls on the temperature anomaly remain poorly understood. Additionally, methods previously used to predict temperature at 5 km depth in this area are simplistic and possibly do not give an accurate representation of the true distribution and magnitude of the temperature anomaly. Here we re-evaluate the geological controls on geothermal potential in the Queensland part of the temperature anomaly using a stochastic thermal model. The results illustrate that the temperature distribution is most sensitive to the thermal conductivity structure of the top 5 km. Furthermore, the results indicate the presence of silicic crust enriched in heat producing elements between and 40 km.
Resumo:
Numerical investigation is carried out for natural convection heat transfer in an isosceles triangular enclosure partitioned in the centre by a vertical wall with infinite conductivity. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. As a result, heat is transferred between both sides of the enclosure through the conducting vertical wall with natural convection boundary layers forming adjacent to the middle partition and two inclined surfaces. The Finite Volume based software, Ansys 14.5 (Fluent) is used for the numerical simulations. The numerical results are obtained for different values of aspect ratio, A (0.2, 0.5 and 1.0) and Rayleigh number, Ra (10^5 <= Ra <= 10^8) for a fixed Prandtl number, Pr = 0.72 of air. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes several distinct stages including an initial stage, a transitional stage and a steady stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed in this study.