985 resultados para component classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyloid fibrils are typically rigid, unbrariched structures with diameters of similar to 10 nm and lengths up to several micrometres, and are associated with more than 20 diseases including Alzheimer's disease and type II diabetes. Insulin is a small, predominantly alpha-helical protein consisting of 51 residues in two disulfide-linked polypeptide chains that readily assembles into amyloid fibrils under conditions of low PH and elevated temperature. We demonstrate here that both the A-chain and the B-chain of insulin are capable of forming amyloid fibrils in isolation under similar conditions, with fibrillar morphologies that differ from those composed of intact insulin. Both the A-chain and B-chain fibrils were found to be able to cross-seed the fibrillization of the parent protein, although these reactions were substantially less efficient than self-seeding with fibrils composed of full-length insulin. In both cases, the cross-seeded fibrils were morphologically distinct from the seeding, material, but shared common characteristics with typical insulin fibrils, including a very similar helical repeat. The broader distribution of heights of the cross-seeded fibrils compared to typical insulin fibrils, however, indicates that their underling protofilament hierarchy may be subtly different. In addition, and remarkably in view of this seeding behavior, the soluble forms of the A-chain and B-chain peptides were found to be capable of inhibiting insulin fibril formation. Studies using mass spectrometry suggest that this behavior might be attributable to complex formation between insulin and the A-chain and B-chain peptides. The finding that the same chemical form of a polypeptide chain in different physical states can either stimulate or inhibit the conversion of a protein into amyloid fibrils sheds new light on the mechanisms underlying fibril formation, fibril strain propagation and amyloid disease initiation and progression. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-component systems capable of self-assembling into soft gel-phase materials are of considerable interest due to their tunability and versatility. This paper investigates two-component gels based on a combination of a L-lysine-based dendron and a rigid diamine spacer (1,4-diaminobenzene or 1,4-diaminocyclohexane). The networked gelator was investigated using thermal measurements, circular dichroism, NMR spectroscopy and small angle neutron scattering (SANS) giving insight into the macroscopic properties, nanostructure and molecular-scale organisation. Surprisingly, all of these techniques confirmed that irrespective of the molar ratio of the components employed, the "solid-like" gel network always consisted of a 1:1 mixture of dendron/diamine. Additionally, the gel network was able to tolerate a significant excess of diamine in the "liquid-like" phase before being disrupted. In the light of this observation, we investigated the ability of the gel network structure to evolve from mixtures of different aromatic diamines present in excess. We found that these two-component gels assembled in a component-selective manner, with the dendron preferentially recognising 1,4-diaminobenzene (>70%). when similar competitor diamines (1,2- and 1,3-diaminobenzene) are present. Furthermore, NMR relaxation measurements demonstrated that the gel based oil 1,4-diaminobenzene was better able to form a selective ternary complex with pyrene than the gel based oil 1,4-diaminocyclohexane, indicative of controlled and selective pi-pi interactions within a three-component assembly. As such, the results ill this paper demonstrate how component selection processes in two-component gel systems call control hierarchical self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares and contrasts, for the first time, one- and two-component gelation systems that are direct structural analogues and draws conclusions about the molecular recognition pathways that underpin fibrillar self-assembly. The new one-component systems comprise L-lysine-based dendritic headgroups covalently connected to an aliphatic diamine spacer chain via an amide bond, One-component gelators with different generations of headgroup (from first to third generation) and different length spacer chains are reported. The self-assembly of these dendrimers in toluene was elucidated using thermal measurements, circular dichroism (CD) and NMR spectroscopies, scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS). The observations are compared with previous results for the analogous two-component gelation system in which the dendritic headgroups are bound to the aliphatic spacer chain noncovalently via acid-amine interactions. The one-component system is inherently a more effective gelator, partly as a consequence of the additional covalent amide groups that provide a new hydrogen bonding molecular recognition pathway, whereas the two-component analogue relies solely on intermolecular hydrogen bond interactions between the chiral dendritic headgroups. Furthermore, because these amide groups are important in the assembly process for the one-component system, the chiral information preset in the dendritic headgroups is not always transcribed into the nanoscale assembly, whereas for the two-component system, fiber formation is always accompanied by chiral ordering because the molecular recognition pathway is completely dependent on hydrogen bond interactions between well-organized chiral dendritic headgroups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the G(A)(0) distribution is assumed as the universal model for amplitude Synthetic Aperture (SAR) imagery data under the Multiplicative Model. The observed data, therefore, is assumed to obey a G(A)(0) (alpha; gamma, n) law, where the parameter n is related to the speckle noise, and (alpha, gamma) are related to the ground truth, giving information about the background. Therefore, maps generated by the estimation of (alpha, gamma) in each coordinate can be used as the input for classification methods. Maximum likelihood estimators are derived and used to form estimated parameter maps. This estimation can be hampered by the presence of corner reflectors, man-made objects used to calibrate SAR images that produce large return values. In order to alleviate this contamination, robust (M) estimators are also derived for the universal model. Gaussian Maximum Likelihood classification is used to obtain maps using hard-to-deal-with simulated data, and the superiority of robust estimation is quantitatively assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an improved stochastic discrimination (SD) is introduced to reduce the error rate of the standard SD in the context of multi-class classification problem. The learning procedure of the improved SD consists of two stages. In the first stage, a standard SD, but with shorter learning period is carried out to identify an important space where all the misclassified samples are located. In the second stage, the standard SD is modified by (i) restricting sampling in the important space; and (ii) introducing a new discriminant function for samples in the important space. It is shown by mathematical derivation that the new discriminant function has the same mean, but smaller variance than that of standard SD for samples in the important space. It is also analyzed that the smaller the variance of the discriminant function, the lower the error rate of the classifier. Consequently, the proposed improved SD improves standard SD by its capability of achieving higher classification accuracy. Illustrative examples axe provided to demonstrate the effectiveness of the proposed improved SD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three classes can be distinguished within the frequency range 0. 1 - 1.0 THz using the above algorithms.

Relevância:

20.00% 20.00%

Publicador: