999 resultados para coefficienti binomiali combinatoria differenze finite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing satellite structures poses an ongoing challenge as the interaction between analysis, experimental testing, and manufacturing phases is underdeveloped. Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing explains the theoretical and practical knowledge needed to perform design of satellite structures. By layering detailed practical discussions with fully developed examples, Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing provides the missing link between theory and implementation.
Computational examples cover all the major aspects of advanced analysis; including modal analysis, harmonic analysis, mechanical and thermal fatigue analysis using finite element method. Test cases are included to support explanations an a range of different manufacturing simulation techniques are described from riveting to shot peening to material cutting. Mechanical design of a satellites structures are covered in three steps: analysis step under design loads, experimental testing to verify design, and manufacturing.
Stress engineers, lecturers, researchers and students will find Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture and Testing a key guide on with practical instruction on applying manufacturing simulations to improve their design and reduce project cost, how to prepare static and dynamic test specifications, and how to use finite element method to investigate in more details any component that may fail during testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout design development of satellite structure, stress engineer is usually challenged with randomness in applied loads and material properties. To overcome such problem, a risk-based design is applied which estimates satellite structure probability of failure under static and thermal loads. Determining probability of failure can help to update initially applied factors of safety that were used during structure preliminary design phase. These factors of safety are related to the satellite mission objective. Sensitivity-based analysis is to be implemented in the context of finite element analysis (probabilistic finite element method or stochastic finite element method (SFEM)) to determine the probability of failure for satellite structure or one of its components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over 50 years bridge plugs and cement have been used for well abandonment and work over and are still the material of choice. However the failures of cement abandonments using bridge plugs has been reported on many occasions, some of which have resulted in fatal consequences. A new patented product is designed to address the shortcomings associated with using bridge plugs and cement. The new developed tools use an alloy based on bismuth that is melted in situ using Thermite reaction. The tool uses the expansion properties of bismuth to seal the well. Testing the new technology in real field under more than 2 km deep sea water can be expensive. Virtual simulation of the new device under simulated thermal and mechanical environment can be achieved using nonlinear finite element method to validate the product and reduce cost. Experimental testing in the lab is performed to measure heat generated due to thermite reaction. Then, a sequential thermal mechanical explicit/implicit finite element solver is used to simulate the device under both testing lab and deep water conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate analysis of gas absorption with instantaneous reaction in a liquid layer of finite thickness in plug flow is presented. An approximate solution to the enhancement factor for the case of unequal diffusivities between the dissolved gas and the liquid reactant has been derived and validated by numerical simulation. Depending on the diffusivity ratio of the liquid reactant to the dissolved gas (?), the enhancement factor tends to be either lower or higher than the prediction of the classical enhancement factor equation based on the penetration theory (Ei,pen) at Fourier numbers typically larger than 0.1. An empirical correlation valid for all Fourier numbers is proposed to allow a quick estimation of the enhancement factor, which describes the prediction of the approximate solution and the simulation data with a relative error below 5?% under the investigated conditions (? = 0.34, Ei,pen = 21000).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas absorption accompanied by an irreversible chemical reaction of first-order or second-order in a liquid layer of finite thickness in plug flow has been investigated. The analytical solution to the enhancement factor has been derived for the case of a first-order reaction, and the exact solution to the enhancement factor has been obtained via numerical simulation for the case of a second-order reaction. The enhancement factor in both cases is presented as a function of the Fourier number and tends to deviate from the prediction of the existing enhancement factor expressions based on the penetration theory at Fourier numbers above 0.1 due to the absence of a well-mixed bulk region in the liquid layer. Approximate enhancement factor expressions that describe the analytical and exact solutions with an accuracy of 5?% and 9?%, respectively, have been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quadratic semigroup algebra is an algebra over a field given by the generators x_1, . . . , x_n and a finite set of quadratic relations each of which either has the shape x_j x_k = 0 or the shape x_j x_k = x_l x_m . We prove that a quadratic semigroup algebra given by n generators and d=(n^2+n)/4 relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and d_n relations, where d_n is the first integer greater than (n^2+n)/4 . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power back-off performances of a new variant power-combining Class-E amplifier under different amplitude-modulation schemes such as continuous wave (CW), envelope elimination and restoration (EER), envelope tracking (ET) and outphasing are for the first time investigated in this study. Finite DC-feed inductances rather than massive RF chokes as used in the classic single-ended Class-E power amplifier (PA) resulted from the approximate yet effective frequency-domain circuit analysis provide the wherewithal to increase modulation bandwidth up to 80% higher than the classic single-ended Class-E PA. This increased modulation bandwidth is required for the linearity improvement in the EER/ET transmitters. The modified output load network of the power-combining Class-E amplifier adopting three-harmonic terminations technique relaxes the design specifications for the additional filtering block typically required at the output stage of the transmitter chain. Qualitative agreements between simulation and measurement results for all four schemes were achieved where the ET technique was proven superior to the other schemes. When the PA is used within the ET scheme, an increase of average drain efficiency of as high as 40% with respect to the CW excitation was obtained for a multi-carrier input signal with 12 dB peak-to-average power ratio. © 2011 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The termination of stiffeners in composite aircraft structures give rise to regions of high interlaminar shear and peel stresses as the load in the stiffener is diffused into the skin. This is of particular concern in co-cured composite stiffened structures where there is a relatively low resistance to through-thickness stress components at the skin-stiffener interface. In Part I, experimental results of tested specimens highlighted the influence of local design parameters on their structural response. Indeed some of the observed behavior was unexpected. There is a need to be able to analyse a range of changes in geometry rapidly to allow the analysis to form an integral part of the structural design process.

This work presents the development of a finite element methodology for modelling the failure process of these critical regions. An efficient thick shell element formulation is presented and this element is used in conjuction with the Virtual Crack Closure Technique (VCCT) to predict the crack growth characteristics of the modelled specimens. Three specimens were modelled and the qualitative aspects of crack growth were captured successfully. The shortcomings in the quantitative correlation between the predicted and observed failure loads are discussed. There was evidence to suggest that high through-thickness compressive stresses enhanced the fracture toughness in these critical regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple non-linear global-local finite element methodology is presented. A global coarse model, using 2-D shell elements, is solved non-linearly and the displacements and rotations around a region of interest are applied, as displacement boundary conditions, to a refined local 3-D model using Kirchhoff plate assumptions. The global elements' shape functions are used to interpolate between nodes. The local model is then solved non-linearly with an incremental scheme independent of that used for the global model.