986 resultados para climate change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an assessment of the effects of climate change on river flow regimes in representative English catchments, using the UKCP09 climate projections. These comprise a set of 10,000 coherent climate scenarios, used here (i) to evaluate the distribution of potential changes in hydrological behaviour and (ii) to construct relationships between indicators of climate change and hydrological change. The study uses six catchments, and focuses on change in average flow, high flow (Q5) and low flow (Q95). There is a large range in hydrological change in each catchment between the plausible UKCP09 climate projections, with differences between catchments largely due to differences in catchment geology and baseline water balance. The range in change between the UKCP09 projections is in most catchments smaller than the range between changes with scenarios based on the CMIP3 ensemble of climate models, and earlier UK scenarios produce changes that tend towards the lower (drier) end of the UKCP09 range. The difference between emissions scenarios is small compared to the range across the 10,000 scenarios. Changes in high flows are largely driven by changes in winter precipitation, whilst changes in low flows are determined by changes in summer precipitation and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is indisputable that climate is an important factor in many livestock diseases. Nevertheless, our knowledge of the impact of climate change on livestock infectious diseases is much less certain. Therefore, the aim of the article is to conduct a systematic review of the literature on the topic utilizing available retrospective data and information. Across a corpus of 175 formal publications, limited empirical evidence was offered to underpin many of the main arguments. The literature reviewed was highly polarized and often inconsistent regarding what the future may hold. Historical explorations were rare. However, identifying past drivers to livestock disease may not fully capture the extent that new and unknown drivers will influence future change. As such, our current predictive capacity is low. We offer a number of recommendations to strengthen this capacity in the coming years. We conclude that our current approach to research on the topic is limiting and unlikely to yield sufficient, actionable evidence to inform future praxis. Therefore, we argue for the creation of a reflexive, knowledge-based system, underpinned by a collective intelligence framework to support the drawing of inferences across the literature.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to assess the necessity of updating the intensity-duration-frequency (IDF) curves used in Portugal to design building storm-water drainage systems. A comparative analysis of the design was performed for the three predefined rainfall regions in Portugal using the IDF curves currently in use and estimated for future decades. Data for recent and future climate conditions simulated by a global and regional climate model chain are used to estimate possible changes of rainfall extremes and its implications for the drainage systems. The methodology includes the disaggregation of precipitation up to subhourly scales, the robust development of IDF curves, and the correction of model bias. Obtained results indicate that projected changes are largest for the plains in southern Portugal (5–33%) than for mountainous regions (3–9%) and that these trends are consistent with projected changes in the long-term 95th percentile of the daily precipitation throughout the 21st century. The authors conclude there is a need to review the current precipitation regime classification and change the new drainage systems towards larger dimensions to mitigate the projected changes in extreme precipitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A statistical–dynamical downscaling (SDD) approach for the regionalization of wind energy output (Eout) over Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global daily mean sea level pressure fields with the central point being located over Germany. Seventy-seven weather classes based on the associated CWT and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamically downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different data sets, the simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term future projections. For evaluation purposes, results of SDD are compared to wind observations and to simulated Eout of purely dynamical downscaling (DD) methods. For the present climate, SDD is able to simulate realistic PDFs of 10-m wind speed for most stations in Germany. The resulting spatial Eout patterns are similar to DD-simulated Eout. In terms of decadal hindcasts, results of SDD are similar to DD-simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout time series of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is demonstrated that SDD can be used to downscale the full ensemble of the Earth System Model of the Max Planck Institute (MPI-ESM) decadal prediction system. Long-term climate change projections in Special Report on Emission Scenarios of ECHAM5/MPI-OM as obtained by SDD agree well to the results of other studies using DD methods, with increasing Eout over northern Europe and a negative trend over southern Europe. Despite some biases, it is concluded that SDD is an adequate tool to assess regional wind energy changes in large model ensembles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cities have developed into the hotspots of human economic activity. From the appearance of the first cities in the Neolithic to 21st century metropolis their impact on the environment has always been apparent. With more people living in cities than in rural environments now it becomes crucial to understand these environmental impacts. With the immergence of megacities in the 20th century and their continued growth in both, population and economic power, the environmental impact has reached the global scale. In this paper we examine megacity impacts on atmospheric composition and climate. We present basic concepts, discuss various definitions of footprints, summarize research on megacity impacts and assess the impact of megacity emissions on air quality and on the climate at the regional to global scale. The intention and ambition of this paper is to give a comprehensive but brief overview of the science with regard to megacities and the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass loss by glaciers has been an important contributor to sea level rise in the past, and is projected to contribute a substantial fraction of total sea level rise during the 21st century. Here, we use a model of the world's glaciers to quantify equilibrium sensitivities of global glacier mass to climate change, and to investigate the role of changes in glacier hypsometry for long-term mass changes. We find that 21st century glacier-mass loss is largely governed by the glacier's response to 20th century climate change. This limits the influence of 21st century climate change on glacier-mass loss, and explains why there are relatively small differences in glacier-mass loss under greatly different scenarios of climate change. The projected future changes in both temperature and precipitation experienced by glaciers are amplified relative to the global average. The projected increase in precipitation partly compensates for the mass loss caused by warming, but this compensation is negligible at higher temperature anomalies since an increasing fraction of precipitation at the glacier sites is liquid. Loss of low-lying glacier area, and more importantly, eventual complete disappearance of glaciers, strongly limit the projected sea level contribution from glaciers in coming centuries. The adjustment of glacier hypsometry to changes in the forcing strongly reduces the rates of global glacier-mass loss caused by changes in global mean temperature compared to rates of mass loss when hypsometric changes are neglected. This result is a second reason for the relatively weak dependence of glacier-mass loss on future climate scenario, and helps explain why glacier-mass loss in the first half of the 20th century was of the same order of magnitude as in the second half of the 20th century, even though the rate of warming was considerably smaller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional forcing-feedback framework has provided an indispensable basis for discussing global climate changes. However, as analysis of model behavior has become more detailed, shortcomings and ambiguities in the framework have become more evident and physical effects unaccounted for by the traditional framework have become interesting. In particular, the new concept of adjustments, which are responses to forcings that are not mediated by the global mean temperature, has emerged. This concept, related to the older ones of climate efficacy and stratospheric adjustment, is a more physical way of capturing unique responses to specific forcings. We present a pedagogical review of the adjustment concept, why it is important, and how it can be used. The concept is particularly useful for aerosols, where it helps to organize what has become a complex array of forcing mechanisms. It also helps clarify issues around cloud and hydrological response, transient vs. equilibrium climate change, and geoengineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall global-scale consequences of climate change are dependent on the distribution of impacts across regions, and there are multiple dimensions to these impacts.This paper presents a global assessment of the potential impacts of climate change across several sectors, using a harmonised set of impacts models forced by the same climate and socio-economic scenarios. Indicators of impact cover the water resources, river and coastal flooding, agriculture, natural environment and built environment sectors. Impacts are assessed under four SRES socio-economic and emissions scenarios, and the effects of uncertainty in the projected pattern of climate change are incorporated by constructing climate scenarios from 21 global climate models. There is considerable uncertainty in projected regional impacts across the climate model scenarios, and coherent assessments of impacts across sectors and regions therefore must be based on each model pattern separately; using ensemble means, for example, reduces variability between sectors and indicators. An example narrative assessment is presented in the paper. Under this narrative approximately 1 billion people would be exposed to increased water resources stress, around 450 million people exposed to increased river flooding, and 1.3 million extra people would be flooded in coastal floods each year. Crop productivity would fall in most regions, and residential energy demands would be reduced in most regions because reduced heating demands would offset higher cooling demands. Most of the global impacts on water stress and flooding would be in Asia, but the proportional impacts in the Middle East North Africa region would be larger. By 2050 there are emerging differences in impact between different emissions and socio-economic scenarios even though the changes in temperature and sea level are similar, and these differences are greater in 2080. However, for all the indicators, the range in projected impacts between different climate models is considerably greater than the range between emissions and socio-economic scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assess how effectively the current network of protected areas (PAs) across the Iberian Peninsula will conserve plant diversity under near-future (2020) climate change. We computed 3267 MAXENT environmental niche models (ENMs) at 1-km spatial resolution for known Iberian plant species under two climate scenarios (1950-2000 baseline & 2020). To predict near-future species distributions across the network of Iberian and Balearics PAs, we combined projections of species’ ENMs with simulations of propagule dispersal by using six scenarios of annual dispersal rates (no dispersal, 0.1 km, 0.5 km, 1 km, 2 km and unlimited). Mined PA grid cell values for each species were then analyzed. We forecast 3% overall floristic diversity richness loss by 2020. The habitat of regionally extant species will contract on average by 13.14%. Niche movement exceeds 1 km per annum for 30% of extant species. While the southerly range margin of northern plant species retracts northward at 8.9 km per decade, overall niche movement is more easterly and westerly than northerly. There is little expansion of the northern range margin of southern plant species even under unlimited dispersal. Regardless of propagule dispersal rate, altitudinal niche movement of +25 m per decade is strongest for northern species. Pyrenees flora is most vulnerable to near-future climate change with many northern plant species responding by shifting their range westerly and easterly rather than northerly. Northern humid habitats will be particularly vulnerable to near-future climate change. Andalusian National Parks will become important southern biodiversity refuges. With limited human intervention (particularly in the Pyrenees), we conclude that floristic diversity in Iberian PAs should withstand near-future climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change critically reviewed and assessed tens of thousands of recent publications to inform about the assess current scientific knowledge on climate change impacts, vulnerability and adaptation. Chapter 3 of the report focuses on freshwater resources, but water issues are also prominent in other sectoral chapters and in the regional chapters of the Working Group II report as well as in various chapters of Working Group I. With this paper, the lead authors, a review editor and the chapter scientist of the freshwater chapter of the WGII AR5 wish to summarize their assessment of the most relevant risks of climate change related to freshwater systems and to show how assessment and reduction of those risks can be integrated into water management.