933 resultados para clay-sized fractions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site 534 reflects a complex interplay of global, basinal, and local influences on sedimentation during the Callovian and Late Jurassic. Rifting and rapid subsidence of the continental margins of the North Atlantic-Tethys seaway occurred during the late Early Jurassic (Sinemurian-Pliensbachian), but rapid spreading between the North American margin (Blake Spur Ridge and magnetic lineation) and the northwest African margin did not commence until the Bathonian or earliest Callovian. Site 534, drilled on marine magnetic anomaly "M-28" of Bryan et al. (1980), was initially about 150 km from either continental margin. The ?middle Callovian basal sediments are dusky red silty marl. Callovian transgression led to active carbonate platforms on the margin, recorded at Site 534 as a rise in the CCD (carbonate compensation depth), then arrival of lime-rich turbidites from the Blake Plateau platform across the Blake Spur Ridge. The host pelagic sediment is greenish black, organic-rich, radiolarian-rich, silty claystone. Hydrothermal activity on the nearby spreading ridge enriched this lower unit in metals. In the Oxfordian, the input of terrestrial silt rapidly diminished; radiolarians or other bioclasts were not preserved. The dark variegated claystone has fine-grained marl and reddish claystone turbidite beds. The late Callovian-Oxfordian Western Tethys has radiolarian chert deposition, marine hiatuses, or organic-rich sediments. The Kimmeridgian and Tithonian had a stable or receding sea level. Near the end of the Jurassic many of the carbonate platforms of the margins were buried beneath prograding fan or alluvial deposits. Carbonate deposition shifted to the deep sea. Site 534 records the deepening of the CCD and ACD (aragonite compensation depth) during the Kimmeridgian and early Tithonian, then a rise of the ACD in the middle Tithonian. Similar trends occurred throughout the Western Tethys-Atlantic. High nannofossil productivity of the seaway led to deposition of very widespread white micritic limestone in the late Tithonian-Berriasian. The underlying sediment had a slower deposition rate of carbonate, therefore its higher clay and associated Fe content produced a red marl. A short sea-level incursion occurred on the Atlantic margins during the Kimmeridgian and is reflected in the Site 534 greenish gray marl unit by numerous turbidite beds of shallow-water carbonates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) is associated with abrupt climate change, carbon cycle perturbation, ocean acidification, as well as biogeographic shifts in marine and terrestrial biota that were largely reversed as the climatic transient waned. We report a clear exception to the behavior of the PETM as a reversing climatic transient in the eastern North Atlantic (Deep-Sea Drilling Project Site 401, Bay of Biscay) where the PETM initiates a greatly prolonged environmental change compared to other places on Earth where records exist. The observed environmental perturbation extended well past the d13C recovery phase and up to 650 kyr after the PETM onset according to our extraterrestrial 3He-based age-model. We observe a strong decoupling of planktic foraminiferal d18O and Mg/Ca values during the PETM d13C recovery phase, which in combination with results from helium isotopes and clay mineralogy, suggests that the PETM triggered a hydrologic change in western Europe that increased freshwater flux and the delivery of weathering products to the eastern North Atlantic. This state change persisted long after the carbon-cycle perturbation had stopped. We hypothesize that either long-lived continental drainage patterns were altered by enhanced hydrological cycling induced by the PETM, or alternatively that the climate system in the hinterland area of Site 401 was forced into a new climate state that was not easily reversed in the aftermath of the PETM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in concentration of total phosphorus in surface waters of dif¬ferent trophicity are discussed. Forms distinguished were: total particulate phosphorus in particles of size >150 ?m, and <20 ?m; dissolved organic phosphorus and dissolved phosphate. Even in hypertrophic waters, the dominant form is still dissolved phosphate (>65%). Concentrations of particulate phosphorus in different size fractions are additional indicators of the level of productivity of waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of the clay mineralogy of Cenozoic sediment samples from Deep Sea Drilling Project Sites 604 and 605 on the upper continental rise off New Jersey indicates that sediment deposition of two different clay mineral facies has occurred. These sites are marked by Paleogene deposition of illite with subordinate kaolinite and smectite covarying in inverse proportion, and by Neogene deposition dominated by illite with subordinate kaolinite and chlorite. Leg 93 results agree with the clay mineral facies proposed by Hathaway (1972), which defined a "Northern facies" consisting of illite and chlorite, with feldspar and hornblende, from erosion of rocks north of Cape Hatteras, and a "Southern facies" composed of smectite, kaolinite, and mixed-layer illite-smectites. Neogene and Quaternary sediments at Sites 604 and 605 contain the "Northern facies," and Paleogene sediments contain the "Southern facies" minerals. Feldspar is exclusively found in Neogene-Quaternary sediments, as is the majority of the amphibole found in these samples. Widespread Paleogene volcanic source materials are suggested by the presence of smectite throughout the early Paleocenemiddle Eocene sediments recovered at Site 605. The clay mineral stratigraphy at Leg 93 sites is comparable to the record at nearby DSDP sites on the lower continental rise and abyssal plain of the northwestern Atlantic (DSDP Sites 388, 105, and 106), and also with the sediments recovered by drilling on the Mazagan Plateau off northwestern Morocco (DSDP Sites 544-547) in the eastern North Atlantic.