975 resultados para chiral lagrangians


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro [4.5] decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [H-2(4)]-regioisomers, 10,10,11,11-[H-2(4)] and 4,4,5,5-[H-2(4)] of 3 and 4,4,5,5-[H-2(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Azedaralide, a potentially advanced intermediate for the total synthesis of various tetranortriterpenes, was constructed utilising the Fernandez-Mateos protocol and assigned both relative and absolute stereochemistries. Both asymmetric aldol and classical chiral resolution attempts failed to deliver pure enantiomers whereas preparative chiral chromatography resolved racemic azedaralide with ease. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbohydrates have been proven as valuable scaffolds to display pharmocophores and the resulting molecules have demonstrated useful biological activity towards various targets including the somatostatin receptors (SSTR), integrins, HIV-1 protease, matrix metalloproteinases (MMP), multidrug resistance-associated protein (MRP), and as RNA binders. Carbohydrate-based compounds have also shown antibacterial and herbicidal activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we study at perturbative level correlation functions of Wilson loops (and local operators) and their relations to localization, integrability and other quantities of interest as the cusp anomalous dimension and the Bremsstrahlung function. First of all we consider a general class of 1/8 BPS Wilson loops and chiral primaries in N=4 Super Yang-Mills theory. We perform explicit two-loop computations, for some particular but still rather general configuration, that confirm the elegant results expected from localization procedure. We find notably full consistency with the multi-matrix model averages, obtained from 2D Yang-Mills theory on the sphere, when interacting diagrams do not cancel and contribute non-trivially to the final answer. We also discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. Also these observables localize on a two-dimensional gauge theory on S^2, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Luscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 super Yang-Mills theory. Finally we study the cusp anomalous dimension in N=6 ABJ(M) theory, identifying a scaling limit in which the ladder diagrams dominate. The resummation is encoded into a Bethe-Salpeter equation that is mapped to a Schroedinger problem, exactly solvable due to the surprising supersymmetry of the effective Hamiltonian. In the ABJ case the solution implies the diagonalization of the U(N) and U(M) building blocks, suggesting the existence of two independent cusp anomalous dimensions and an unexpected exponentation structure for the related Wilson loops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antioxidant property of myo-inositol hexakisphosphate is important in the prevention of hydroxyl radical formation which may allow it to act as a 'safe' carrier of iron within the cell. Here, the hypothesis that the recently discovered natural product, myo-inositol 1,2,3-trisphosphate represents the simplest structure to mimic phytate's antioxidant activity has been tested. The first synthesis of myo-inositol 1,2,3-trisphosphate has been completed, along with its X-ray structure determination and that of key synthetic intermediates. Iron binding studies of myo-inositol 1,2,3-trisphosphate demonstrated that phosphate groups with the equatorial-axial-equatorial conformation are required for complete inhibition of hydroxyl radical formation. myo-Inositol monophosphatase is a key enzyme in recycling myo-inositol from its monophosphates in the brain and its inhibition is implicated in lithium's antimanic properties. Current synthetic strategies require inositol compounds to be protected (often with more than one group), resolved, phosphorylated and deprotected to produce the desired optically active myo-inositol phosphates. Here, the synthesis of myo-inositol 3-phosphate has been achieved in only 4 steps from myo-inositol. The stereoselective addition of the chiral phosphorylating agent (2R,4S,5R)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidin-2-one to a protected inositol intermediate allowed separation of diastereoisomers and easy deprotection to myo-inositol 3-phosphate. This strategy also allows the possible introduction of labels of oxygen and sulphur to give a thiophosphate of known stereochemistry at phosphorus which would be useful for the analysis of the stereochemical course of phosphate hydrolysis catalysed by inositol monophosphatase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis comprises two main objectives. The first objective involved the stereochemical studies of chiral 4,6-diamino-1-aryl-1,2-dihydro-s-triazines and an investigation on how the different conformations of these stereoisomers may affect their binding affinity to the enzyme dihydrofolate reductase (DHFR). The ortho-substituted 1-aryl-1,2-dihydro-s-triazines were synthesised by the three component method. An ortho-substitution at the C6' position was observed when meta-azidocycloguanil was decomposed in acid. The ortho-substituent restricts free rotation and this gives rise to atropisomerism. Ortho-substituted 4,6-diamino-1-aryl-2-ethyl-1,2-dihydro-2-methyl-s-triazine contains two elements of chirality and therefore exists as four stereoisomers: (S,aR), (R,aS), (R,aR) and (S,aS). The energy barriers to rotation of these compounds were calculated by a semi-empirical molecular orbital program called MOPAC and they were found to be in excess of 23 kcal/mol. The diastereoisomers were resolved and enriched by C18 reversed phase h.p.l.c. Nuclear overhauser effect experiments revealed that (S,aR) and (R,aS) were the more stable pair of stereoisomers and therefore existed as the major component. The minor diastereoisomers showed greater binding affinity for the rat liver DHFR in in vitro assay. The second objective entailed the investigation into the possibility of retaining DHFR inhibitory activity by replacing the classical diamino heterocyclic moiety with an amidinyl group. 4-Benzylamino-3-nitro-N,N-dimethyl-phenylamidine was synthesised in two steps. One of the two phenylamidines indicated weak inhibition against the rat liver DHFR. This weak activity may be due to the failure of the inhibitor molecule to form strong hydrogen bonds with residue Glu-30 at the active site of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enantioselective catalysis is an increasingly important method of providing enantiomeric compounds for the pharmaceutical and agrochemical industries. To date, heterogeneous catalysts have failed to match the industrial impact achieved by homogeneous systems. One successful approach to the creation of heterogeneous enantioselective catalysts has involved the modification of conventional metal particle catalysts by the adsorption of chiral molecules. This article examines the contribution of effects such as chiral recognition and amplification to these types of system and how insight provided by surface science model studies may be exploited in the design of more effective catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two series of novel modified silicas have been prepared in which individual dendritic branches have been attached to aminopropylsilica using standard peptide coupling methodology. The dendritic branches are composed of enantiomerically pure l-lysine building blocks, and hence, the modified silicas have the potential to act as chiral stationary phases in chromatography. In one series of modified silicas, the surface of the dendritic branch consists of Boc carbamate groups, whereas the other has benzoyl amide surface groups. Different coupling reagents have been investigated in order to maximize the loading onto the solid phase. The new supported dendritic materials have been fully characterized with properties of the bulk material determined by elemental analysis, 13C NMR, and IR spectroscopy, whereas XPS provides important information about the surface of the modified silica exposed to the incident X-rays, the key region in which potential chromatographic performance of these materials will take place. Although the bulk analyses indicate that loading of the dendritic branch onto silica decreases with increasing dendritic generation (and consequently steric bulk), XPS indicates that the optimum surface coverage is actually obtained at the second generation of dendritic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well known that many medicines are a mixture of two enantiomers, or mirror-image molecules. Two enantiomers occur when a molecule has a single chiral centre and the two mirror images, called S or L (left handed) and R or D (right handed), are usually found in equal amounts in the parent (racemic) mixture. While for many compounds used in clinical practice the active moiety is found in one of the two enantiomers with the other being seen as an unnecessary and redundant component of the racemic mixture, the difference between enantiomers can mean a difference between therapeutic and adverse effects, as well as in beneficial pharmacological effect and potency. © 2010 The Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloroperoxidase (CPO), secreted by marine fungus Caldariomyces fumago, is the most versatile catalyst among known heme enzymes. Chloroperoxidase can catalyze epoxidation reactions with high enantioselectivity and high yield, which makes CPO an attractive candidate for both industrial and medicinal chiral synthesis. Toward this end, we have constructed two CPO mutants, F103A and N74V. Chiral HPLC was used to evaluate the enantioselectivity and yield of CPO and the mutants toward the epoxidation of styrene and its derivatives. Both of the mutants show dramatically changed epoxidation profiles compared to the parent protein. This information provided fresh insight into the mechanism through which CPO achieves its enantioselectivity. Furthermore, effort was made to understand the biological function of CPO through characterization of CPO catalyzed oxidation of dimethylsulfoniopropionate (DMSP), a secondary metabolite of many marine algal species that plays a pivotal role in marine ecology and global climate.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kainic acid has been used for nearly 50 years as a tool in neuroscience due to its pronounced neuroexcitatory properties. However, the significant price increase of kainic acid resulting from the disruption in the supply from its natural source, the alga Digenea Simplex, as well as inefficient synthesis of kainic acid, call for the exploration of functional mimics of kainic acid that can be synthesized in a simpler way. Aza kainoids analog could be one of them. The unsubstituted aza analog of kainoids has demonstrates its ability as an ionotropic glutamate receptor agonist and showed affinity in the chloride dependent glutamate (GluCl) binding site. This opened a question of the importance of the presence of one nitrogen or both nitrogens in the aza kainoid analogs for binding to glutamate receptors. Therefore, two different pyrrolidine analogs of kainic acid, trans -4-(carboxymethyl)pyrrolidine-3-carboxylic acid and trans -2-carboxy-3-pyrrolidineacetic acid, were synthesized through multi-step sequences. The lack of the affinity of both pyrrolidine analogs in GluCl binding site indicated that both nitrogens in aza kainoid analogs are involved in hydrogen bonding with receptors, significantly enhancing their affinity in GluCl binding site. Another potential functional mimic of kainic acid is isoxazolidine analogs of kainoids whose skeleton can be constituted directly via a 1, 3 dipolar cycloaddition as the key step. The difficulty in synthesizing N-unsubstituted isoxazolidines when applying such common protecting groups as alkyl, phenyl and benzyl groups, and the requirement of a desired enantioselectivity due to the three chiral ceneters in kainic acid, pose great challenges. Hence, several different protected nitrones were studied to establish that diphenylmethine nitrone may be a good candidate as the dipole in that the generated isoxazolidines can be deprotected in mild conditions with high yields. Our investigations also indicated that the exo/endo selectivity of the 1, 3 dipolar cycloaddition can be controlled by Lewis acids, and that the application of a directing group in dipolarophiles can accomplish a satisfied enantioselectivity. Those results demonstrated the synthesis of isoxazoldines analogs of kainic acid is very promising.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. ^ On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'-C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5' E isomer of the inseparable mixture of 9'R/S diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the bromination-dehydrobromination strategy with pyridinium tribromide and DBU. ^ Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1-haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Z-fluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4. Couplings of 1,1-dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme S-adenosyl-L-homocysteine (AdoHey) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'- C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5'E isomer of the inseparable mixture of 9'RIS diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the brominationdehydrobromination strategy with pyridinium tribromide and DBU. Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pdcatalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1- haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Zfluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4 . Couplings of 1,1- dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product.