997 resultados para bismuth copper oxides
Resumo:
A capillary electrophoresis microchip coupled with a confocal laser-induced fluorescence (LIF) detector was successfully constructed for the analysis of trace amounts of heavy metals in environmental sources. A new fluorescence dye, RBPhOH, synthesized from rhodamine B, was utilized in a glass microchip to selectively determine copper with high sensitivity. A series of factors including running buffer concentration, detection voltage, and sample loading time were optimized for maximum LIF detector response and, hence, method sensitivity.
Resumo:
An effective Mo-1 V(0.3)Te(0.23)Nb(0.12)Ox catalysts for the selective oxidation of propane to acrylic acid was successfully prepared by using rotavap method. The catalyst was characterized by XRD and shown to contain (V0.07Mo0.93)(5)O-14, (Nb0.09Mo0.91)O-2.8,3MoO(2)(.)Nb(2)O(5), Mo5TeO16 and/or TeMo4O13, Te4Nb2O13 and a new TeMO (TeVMoO or TeVNbMoO; M = Mo, V and Nb) crystalline phase as the major phase. Regardless of the intrinsic catalytic characteristics of the catalyst, the external reaction conditions would have strong effects on the catalytic performance for propane oxidation. So in this paper, the effects of reaction conditions were investigated and discussed, including temperature, space velocity, V(air)/V(C3H8) ratio and V(steam)/V(C3H8) ratio. A stability test was also carried out on Mo1V0.3Te0.23Nb0.12Ox catalyst. The experimental run was performed during 100 h under the optimized reaction conditions. During the 100 h of operation, propane conversion and acrylic acid selectivity remained at about 59 and 64%, respectively. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Isolated transition metal ions/oxides in molecular sieves and on surfaces are a class of active sites for selective oxidation of hydrocarbons. Identifying the active sites and their coordination structure is vital to understanding their essential role played in catalysis and designing and synthesizing more active and selective catalysts. The isolated transition metal ions in the framework of molecular sieves (e.g., TS-1, Fe-ZSM-5, and V-MCM-41) or on the surface of oxides (e.g., MoO3/Al2O3 and TiO2/SiO2) were successfully identified by UV resonance Raman spectroscopy. The charge transfer transitions between the transition metal ions and the oxygen anions are excited by a UV laser and consequently the UV resonance Raman effect greatly enhances the Raman signals of the isolated transition metal ions. The local coordination of these ions in the rigid framework of molecular sieves or in the relatively flexible structure on the surface can also be differentiated by the shifts of the resonance Raman bands. The relative concentration of the isolated transition metal ion/oxides could be estimated by the intensity ratio of Raman bands. This study demonstrates that the UV resonance Raman spectroscopy is a general technique that can be widely applied to the in-situ characterization of catalyst synthesis and catalytic reactions. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
A new copper-(Schiff-base) complex, derived from (S)-2-amino-1,1-di(3,5-di-t-butylphenyl)propanol, 2-hydroxy-5-nitrobenzaldehyde and copper acetate monohydrate, was used as an efficient catalyst for the cyclopropanation of styrene with diazoacetates, affording ees of up to 98%. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel tetraaza macrocyclic Schiff base ligand, 6,13-dinitro-5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,5,7,-12-tetraene, was prepared and its copper(II) and nickel(II) complexes were characterized. This ligand was found to be an excellent extractant for copper(II).
Resumo:
It is shown that near-Nernstian calibration slopes can be obtained with a Cu1.8Se electrode in a range of cupric ion buffers in spite of a high chloride content. Best results are obtained with the ligands ethylenediamine, glycine and histidine. The onset of cupric ion toxicity towards marine organisms falls within the pCu calibration range obtained with glycine, and the Cu1.8Se electrode could, therefore, be useful for monitoring cupric ion activity in bioassays in sea-water media.
Resumo:
Freshly prepared Fe and Al hydrous oxide gels and the amorphous product of heating gibbsite selectively adsorbed traces of Ca and Sr from solutions containing a large excess (∼1M) of NaNO3. The fraction of the added Ca (Sr) adsorbed depended principally on the suspension pH, the amount of solid present, and to a lesser extent on the NaNO3 concentration. Significant Ca and Sr adsorption occurred on the Fe and Al gels, and heated gibbsite, at pH values below the points of zero charge (8.1, 9.4, and 8.3±0.1, respectively), indicating specific adsorption. The pH (± 0.10) at which 50% of the Ca was adsorbed (pH50) occurred at pH 7.15 for the Fe gel (0.093M Fe), 8.35 for the Al gel (0.093M Al), and 6.70 for the heated gibbsite (0.181M Al); for Sr, the pH50 values were 7.10, 9.00, and 6.45, respectively. For the Fe gel and heated gibbsite, an empirical model based on the law of mass action described the pH dependence of adsorption reasonably well and suggested that for each Ca or Sr fraction adsorbed, approximately one proton was released. Failure of the Al gel to fit this model may have resulted from its rapid aging.
Resumo:
An efficient O-arylation of phenols and aliphatic alcohols with aryl halides was developed that uses an air-stable copper(I) complex as the catalyst. This arylation reaction can be performed in good yield in the absence of Cs2CO3. A variety of functional groups are compatible with these reaction conditions with low catalyst loading levels.
Resumo:
In this work, a new method for the simultaneous determination of Pb(II) and Cd(II) on the multiwalled carbon nanotubes (MWNT)-Nafion-bismuth modified glassy carbon electrode (GCE) using square-wave anodic stripping voltammetry has been studied. Scanning electron microscopy was used to investigate the characteristics of the MWNT-Nafion-bismuth modified GCE.
Resumo:
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) can be effectively improved at the PSS-BMIMPF6 modified GC.
Resumo:
Here we investigated the analytical performances of the bismuth-modified zeolite doped carbon paste electrode (BiF-ZDCPE) for trace Cd and Pb analysis. The characteristics of bismuth-modified electrodes were improved greatly via addition of synthetic zeolite into carbon paste. To obtain high reproducibility and sensitivity, optimum experimental conditions for bismuth deposition Were Studied.
Resumo:
Copper phthalocyanine organic thin-film transistors (OTFTs) were fabricated with top-gate geometry and the effects of different gate dielectrics on the transport proper-ties in OTFTs were studied. The mobility was found to be gate voltage dependent and the results showed that besides the charge density in the accumulation layer, the energetic disorder induced by gate dielectrics played an important role in determining the field-effect mobility in OTFTs.