983 resultados para atom tracking
Resumo:
Our eyes are input sensors which Provide our brains with streams of visual data. They have evolved to be extremely efficient, and they will constantly dart to-and-fro to rapidly build up a picture of the salient entities in a viewed scene. These actions are almost subconscious. However, they can provide telling signs of how the brain is decoding the visuals and call indicate emotional responses, prior to the viewer becoming aware of them. In this paper we discuss a method of tracking a user's eye movements, and Use these to calculate their gaze within an immersive virtual environment. We investigate how these gaze patterns can be captured and used to identify viewed virtual objects, and discuss how this can be used as a, natural method of interacting with the Virtual Environment. We describe a flexible tool that has been developed to achieve this, and detail initial validating applications that prove the concept.
Resumo:
Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.
Resumo:
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based on local appearance, (iii) hierarchical object recognition, and (iv) fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed. Copyright (C) 2007 Hindawi Publishing Corporation. All rights reserved.
Resumo:
Easterly waves (EWs) are prominent features of the intertropical convergence zone (ITCZ), found in both the Atlantic and Pacific during the Northern Hemisphere summer and fall, where they commonly serve as precursors to hurricanes over both basins.Alarge proportion of Atlantic EWs are known to form over Africa, but the origin of EWs over the Caribbean and east Pacific in particular has not been established in detail. In this study reanalyses are used to examine the coherence of the large-scale wave signatures and to obtain track statistics and energy conversion terms for EWs across this region. Regression analysis demonstrates that some EW kinematic structures readily propagate between the Atlantic and east Pacific, with the highest correlations observed across Costa Rica and Panama. Track statistics are consistent with this analysis and suggest that some individual waves are maintained as they pass from the Atlantic into the east Pacific, whereas others are generated locally in the Caribbean and east Pacific. Vortex anomalies associated with the waves are observed on the leeward side of the Sierra Madre, propagating northwestward along the coast, consistent with previous modeling studies of the interactions between zonal flow and EWs with model topography similar to the Sierra Madre. An energetics analysis additionally indicates that the Caribbean low-level jet and its extension into the east Pacific—known as the Papagayo jet—are a source of energy for EWs in the region. Two case studies support these statistics, as well as demonstrate the modulation of EW track and storm development location by the MJO.
Resumo:
In a “busy” auditory environment listeners can selectively attend to one of several simultaneous messages by tracking one listener's voice characteristics. Here we ask how well other cues compete for attention with such characteristics, using variations in the spatial position of sound sources in a (virtual) seminar room. Listeners decided which of two simultaneous target words belonged in an attended “context” phrase when it was played with a simultaneous “distracter” context that had a different wording. Talker difference was in competition with a position difference, so that the target‐word chosen indicates which cue‐type the listener was tracking. The main findings are that room‐acoustic factors provide some tracking cues, whose salience increases with distance separation. This increase is more prominent in diotic conditions, indicating that these cues are largely monaural. The room‐acoustic factors might therefore be the spectral‐ and temporal‐envelope effects of reverberation on the timbre of speech. By contrast, the salience of cues associated with differences in sounds' bearings tends to decrease with distance, and these cues are more effective in dichotic conditions. In other conditions, where a distance and a bearing difference cooperate, they can completely override a talker difference at various distances.
Resumo:
We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)(2)Cl] molecule adsorbed on the TiO2 (110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordinated Ti ions in the surface. A minority geminal dicarboryl species, where Rh-Cl bond scission has occurred, is found bridging the bridging oxygen ions forming a high-symmetry site.
Resumo:
A new man-made target tracking algorithm integrating features from (Forward Looking InfraRed) image sequence is presented based on particle filter. Firstly, a multiscale fractal feature is used to enhance targets in FLIR images. Secondly, the gray space feature is defined by Bhattacharyya distance between intensity histograms of the reference target and a sample target from MFF (Multi-scale Fractal Feature) image. Thirdly, the motion feature is obtained by differencing between two MFF images. Fourthly, a fusion coefficient can be automatically obtained by online feature selection method for features integrating based on fuzzy logic. Finally, a particle filtering framework is developed to fulfill the target tracking. Experimental results have shown that the proposed algorithm can accurately track weak or small man-made target in FLIR images with complicated background. The algorithm is effective, robust and satisfied to real time tracking.
Resumo:
Gaussian multi-scale representation is a mathematical framework that allows to analyse images at different scales in a consistent manner, and to handle derivatives in a way deeply connected to scale. This paper uses Gaussian multi-scale representation to investigate several aspects of the derivation of atmospheric motion vectors (AMVs) from water vapour imagery. The contribution of different spatial frequencies to the tracking is studied, for a range of tracer sizes, and a number of tracer selection methods are presented and compared, using WV 6.2 images from the geostationary satellite MSG-2.