963 resultados para astaxanthin esters
Resumo:
Biodiesel is fast becoming one of the key transport fuels as the world endeavours to reduce its carbon footprint and find viable alternatives to oil derived fuels. Research in the field is currently focusing on more efficient ways to produce biodiesel, with the most promising avenue of research looking into the use of heterogeneous catalysis. This article presents a framework for kinetic reaction and diffusive transport modelling of the heterogeneously catalysed transesterification of triglycerides into fatty acid methyl esters (FAMEs), unveiled by a model system of tributyrin transesterification in the presence of MgO catalysts. In particular, the paper makes recommendations on multicomponent diffusion calculations such as the diffusion coefficients and molar fluxes from infinite dilution diffusion coefficients using the Wilke and Chang correlation, intrinsic reaction kinetic studies using the Eley-Rideal kinetic mechanism with methanol adsorption as the rate determining steps and multiscale reaction-diffusion process simulation between catalytic porous and bulk reactor scales. © 2013 The Royal Society of Chemistry.
Resumo:
De-inking sludge is a waste product generated from secondary fibre paper mills who manufacture recycled paper into new paper sheets; it refers directly to the solid residues which evolve during the de-inking stage of the paper pulping process. The current practice for the disposal of this waste is either by land-spreading, land-filling or incineration which are unsustainable. This work has explored the intermediate pyrolysis of pre-conditioned de-inking sludge pellets in a recently patented 20 kg/h intermediate pyrolysis reactor (The Pyroformer). The reactor is essentially two co-axial screws which are configured in such a way as to circulate solids within the reactor and thus facilitate in the cracking of tars. The potential application of using the volatile organic vapours and permanent gases evolved would be to generate both combined heat and power (CHP) located at paper making sites. The results show that de-inking sludge could be successfully pyrolysed and the organic vapours produced were composed of a mixture of aromatic hydrocarbons, phenolic compounds and some fatty acid methyl esters as detected by liquid GC-MS. The calorific value of the oil after condensing was between 36 and 37 MJ/kg and the liquid fuel properties were also determined, permanent gases were detected by a GC-TCD and were composed of approximately 24% CO, 6% CH and 70% CO (v/v%). The solid residue from pyrolysis also contained a small residual calorific value, and was largely composed of mainly calcium based inert metal oxides. The application of applying intermediate pyrolysis to de-inking sludge for both CHP production and waste reduction is in principle a feasible technology which could be applied at secondary fibre paper mills. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Tuberculosis (TB), an infection caused by human pathogen Mycobacterium tuberculosis, continues to kill millions each year and is as prevalent as it was in the pre-antimicrobial era. With the emergence of continuously-evolving multi-drug resistant strains (MDR) and the implications of the HIV epidemic, it is crucial that new drugs with better efficacy and affordable cost are developed to treat TB. With this in mind, the first part of this thesis discusses the synthesis of libraries of derivatives of pyridine carboxamidrazones, along with cyclised (1,2,4-triazole and 1,2,4-oxadiazole) and fluorinated analogues. Microbiological screening against M. tuberculosis was carried out at the TAACF, NIAID and IDRI (USA). This confirmed the earlier findings that 2-pyridyl-substituted carboxamidrazones were more active than the 4-pyridyl-substituted carboxamidrazones. Another important observation was that upon cyclisation of these carboxamidrazones, a small number of the triazoles retained their activity while in most of the remaining compounds the activity was diminished. This might be attributed to the significant increase in logP value caused by cyclisation of these linear carboxamidrazones, resulting in high lipophilicity and decreased permeability. Another reason might be that the rigidity conferred upon the compound due to cyclisation, results in failure of the compound to fit into the active site of the putative target enzyme. In order to investigate the potential change to the compounds’ metabolism in the organism and/or host, the most active compounds were selected and a fluorine atom was introduced in the pyridine ring. The microbiological results shows a drastic improvement in the activity of the fluorinated carboxamidrazone amides as compared to their non fluorinated counterpart. This improvement in the activity could possibly be the result of the increased cell permeability caused by the fluorine. In a subsidiary strand, a selection of long-chain , -unsaturated carboxylic esters, -keto, -hydroxy carboxylic esters and -keto, -hydroxy carboxylic esters, structurally similar to mycolic acids, were synthesised. The microbiological data revealed that one of the open chain compound was active against the Mycobacterium tuberculosis H37Rv strain and some resistant isolates. The possible compound activity could be its potential to disrupt mycobacterial cell wall synthesis by interfering with the FAS-II pathway.
Resumo:
Arenesulfonic-acid functionalized SBA-15 materials have been used in the production of biodiesel from low grade oleaginous feedstock. These materials display an outstanding catalytic activity, being able to promote the transformation of crude palm oil with methanol into fatty acid methyl esters with high yield (85%) under mild reaction conditions. However, high sensitivity of the catalyst against poisoning by different substances has also been detected. Thus, alkaline metal cations, such as sodium or potassium exert a negative influence on the catalytic activity of these materials, being necessary amounts around 500 ppm of sodium in the reaction media to decrease the catalytic activity of these materials to a half of its initial value in just two reaction runs. The deactivation of arenesulfonic acid functionalized SBA-15 materials seems to occur in this case by ion exchange of the acid protons at the sulfonic groups. Organic unsaponifiable compounds like lecithin or retinol also induce a negative influence in the catalytic activity of these sulfonic acid-based materials, though not so intense as in the case of alkaline metals. The deactivating mechanism associated to the influence of the organic compounds seems to be linked to the adsorption of such substances onto the catalytic acid sites as well as on the silica surface. The accumulation of lecithin in the surface of catalyst, observed by means of thermogravimetric analysis, suggest the creation of a strong interaction, probably by ion pair, between this compound and the sulfonic acid group.
Resumo:
Hydrothermal saline promoted grafting of sulfonic acid groups onto SBA-15 and periodic mesoporous organic silica analogues affords solid acid catalysts with high acid site loadings (>2.5 mmol g-1 H+), ordered mesoporosity and tunable hydrophobicity. The resulting catalysts show excellent activity for fatty acid esterification and tripalmitin transesterification to methyl palmitate, with framework phenyl groups promoting fatty acid methyl esters production. (Chemical Equation Presented)
Resumo:
An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 − sites to OH− and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C–H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.
Resumo:
Several ester derivatives of rosmarinic acid (rosmarinates) were synthesised, characterised (1D and 2D NMR, UV and FTIR spectroscopy) and tested for their potential use as antioxidants derived from a renewable natural resource. The intrinsic free radical scavenging activity of the rosmarinates was assessed, initially using a modified DPPH (2, 2-diphenyl-1-picrylhydrazyl radical) method, and found to be higher than that of commercial synthetic hindered phenol antioxidants Irganox 1076 and Irganox 1010. The thermal stabilising performance of the rosmarinates in polyethylene (PE) and polypropylene (PP) was subsequently examined and compared to that of samples prepared similarly but in the presence of Irganox 1076 (in PE) and Irganox 1010 (in PP) which are typically used for polyolefin stabilisation in industrial practice. The melt stability and the long-term thermo-oxidative stability (LTTS) of processed polymers containing the antioxidants were assessed by measuring the melt flow index (MFI), melt viscosity, oxidation induction time (OIT) and long-term (accelerated) thermal ageing performance. The results show that both the melt and the thermo-oxidative stabilisation afforded by the rosmarinates, and in particular the stearyl derivative, in both PE and PP, are superior to those of Irganox 1076 and Irganox 1010, hence their potential as effective sustainable bio-based antioxidants for polymers. The rosmarinic acid used for the synthesis of the rosmarinates esters in this study was obtained from commercial rosemary extracts (AquaROX80). Furthermore, a large number of different strains of UK-grown rosemary plants (Rosmarinum officinalis) were also extracted and analysed in order to examine their antioxidant content. It was found that the carnosic and the rosmarinic acids, and to a much lesser extent the carnosol, constituted the main antioxidant components of the UK-plants, with the two acids being present at a ratio of 3:1, respectively.
Resumo:
Gasoline oxygenates (MTBE, methyl tert-butyl ether; DIPE, di-isopropyl ether; ETBE, ethyl tert-butyl ether; TAME, tert-amyl ether) are added to gasoline to boost octane and enhance combustion. The combination of large scale use, high water solubility and only minor biodegradability has now resulted in a significant gasoline oxygenate contamination occurring in surface, ground, and drinking water systems. Combination of hydroxyl radical formation and the pyrolytic environment generated by ultrasonic irradiation (665 kHz) leads to the rapid degradation of MTBE and other gasoline oxygenates in aqueous media. ^ The presence of oxygen promotes the degradation processes by rapid reaction with carbon centered radicals indicating radical processes involving O 2 are significant pathways. A number of the oxidation products were identified. The formation of products (alcohols, ketones, aldehydes, esters, peroxides, etc) could be rationalized by mechanisms which involve hydrogen abstraction by OH radical and/or pyrolysis to form carboncentered radicals which react with oxygen and follow standard oxidation chain processes. ^ The reactions of N-substituted R-triazolinediones (RTAD; R = CH 3 or phenyl) have attracted considerable interest because they exhibit a number of unusual mechanistic characteristics that are analogous to the reactions of singlet oxygen (1O2) and offer an easy way to provide C-N bond(s) formation. The reactions of triazolinedione with olefins have been widely studied and aziridinium imides are generally accepted to be the reactive intermediates. ^ We observed the rapid formation of an unusual intermediate upon mixing tetracyclopropylethylene with 4-methyl-1,2,4-triazoline-3,5-dione in CDCl 3. Detailed characterization by NMR (proton, 13C, 2-D NMRs) indicates the intermediate is 5,5,6,6-tetracyclopropyl-3-methyl-5,6-dihydro-oxazolo[3,2- b][1,2,4]-triazolium-2-olate. Such products are extremely rare and have not been studied. Upon warming the intermediate is converted to 2 + 2 diazetidine (major) and ene product (minor). ^ To further explore the kinetics and dynamics of the reaction activation energies were obtained using Arrhenius plots. Activation energies for the formation of the intermediate from reactants, and 2+2 adduct from the intermediate were determined as 7.48 kcal moll and 19.8 kcal mol−1 with their pre-exponential values of 2.24 × 105 dm 3 mol−1 sec−1 and 2.75 × 108 sec−1, respectively, meaning net slow reactions because of low pre-exponential values caused by steric hindrance. ^
Resumo:
Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^
Resumo:
The kainate receptors are one of the three major groups of ionotropic glutamate receptors in the mammalian central nervous system. They are so named after their most potent agonist, kainic acid (KA), a natural product isolated from the seaweed Diginea simplex. This compound shows both neuroexcitatory and excitotoxic activities, and is an important pharmacological tool for neurophysiological studies. We predict that the more synthetically accessible aza analogues of kainic acid, could act as functional mimics of KA. These could be produced by the 1,3-dipolar cycloaddition of diazoalkanes with trans glutaconate esters. ^ 1,3-Dipolar cycloadditions have been shown to produce 1-pyrazolines that isomerize into 2-pyrazolines. The 1- and 2-pyrazolines can be precursors to aza analogs of kainoids. The regioselectivity, relative stereochemistry and isomerization of the 1-pyrazolines into 2-pyrazolines have been evaluated. Reductions of the 1- and 2-pyrazolines produced aza analogs of kainoids. TMS diazomethane was used as the dipole in 1,3-dipolar cycloaddition reactions leading to aza KA analogs via 2-pyrazolines. A systematic study of cycloaddition-isomerization processes involving TMS-diazomethane and various α, β-unsaturated dipolarophiles has been undertaken. 1H-NMR monitoring of the reaction mixture compositions during the cycloaddition reaction revealed evidence of retro-dipolar cycloaddition processes. Faster formation of 4,5- trans-1-pyrazoline at the beginning of the reaction and subsequent isomerization of this product into 4,5-cis-1-pyrazoline via a retro-dipolar cycloaddition has been observed. Increased reaction time and/or reaction temperature preferentially caused the irreversible isomerization of 4,5-cis-1-pyrazoline into 4,5-cis-2-pyrazoline, which led to high yields of 4,5-cis-2-pyrazolines in the overall process. ^ Two syntheses of the 5-unsubstituted aza-kainic acid have been performed; first, via the reduction of the TMS-eliminated 2-pyrazoline from TMS diazomethane; second by the direct reduction of 1-pyrazoline with Hg/Al-amalgam. 5-Phenyl aza-kainic acid has been produced by direct reduction of 1-pyrazoline, obtained in the reaction of phenyldiazomethane and dibenzyl glutaconate, with Hg/Al-amalgam. ^ Current responses to aza kainate analogs in Aplysia whole cell buccal ganglia indicate potent neuroexcitatory activity. The repetitive exposure of neuronal cells to the 5-unsubstituted aza-kainic acid led to non-desensitizing current responses, showing both binding affinity and neuronal ion-channel activation by the synthesized agonist compound. ^
Resumo:
Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence, critical for establishing infection. There are two major pathways of QS systems. Type 1 is species specific or intra-species communication in which N-acylhomoserine lactones (Gram-negative bacteria) or oligopeptides (Gram-positive bacteria) are employed as signaling molecules (autoinducer one). Type 2 is inter-species communication in which S-4,5-dihydroxy-2,3-pentanedione (DPD) or its borate esters are used as signaling molecules. The DPD is biosynthesized by LuxS enzyme from S-ribosylhomocysteine (SRH). Recent increase in prevalence of bacterial strains resistant to antibiotics emphasizes the need for the development of new generation of antibacterial agents. Interruption of QS by small molecules is one of the viable options as it does not affect bacterial growth but only virulence, leading to less incidence of microbial resistance. Thus, in this work, inhibitors of both N-acylhomoserine lactone (AHL) mediated intra-species and LuxS enzyme, involved in inter-species QS are targeted. The γ-lactam and their reduced cyclic azahemiacetal analogs, bearing the additional alkylthiomethyl substituent, were designed and synthesized targeting AHL mediated QS systems in P. aeruginosa and Vibrio harveyi. The γ-lactams with nonylthio or dodecylthio chains acted as inhibitors of las signaling in P. aeruginosa with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent were found to strongly inhibit both las and rhl signaling in P. aeruginosa at higher concentrations. However, lactam and their azahemiacetal analogs were found to be inactive in V. harveyi QS systems. The 4-aza-S-ribosyl-L-homocysteine (4-aza-SRH) analogs and 2-deoxy-2-substituted-S-ribosyl-L-homocysteine analogs were designed and synthesized targeting Bacillus subtilis LuxS enzyme. The 4-aza-SRH analogs in which oxygen in ribose ring is replaced by nitrogen were further modified at anomeric position to produce pyrrolidine, lactam, nitrone, imine and hemiaminal analogs. Pyrrolidine and lactam analogs which lack anomeric hydroxyl, acted as competitive inhibitors of LuxS enzyme with KI value of 49 and 37 µM respectively. The 2,3-dideoxy lactam analogs were devoid of activity. Such findings attested the significance of hydroxyl groups for LuxS binding and activity. Hemiaminal analog of SRH was found to be a time-dependent inhibitor with IC50 value of 60 µM.
Resumo:
Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.
Resumo:
Vegetable oils are characterized as important raw materials in the supplying of natural substances of interest pharmaceutical, food and cosmetic industry. Sunflower oil stands out for its important composition present in unsaturated fatty acids such as oleic acid (C18:1) and linoleic (C18:2), responsible for many health benefits. The main objective of this study is obtain enriched fractions in unsaturated compounds from refined sunflower oil. The oil used in this study was characterized by the determination of some properties, like iodine number, acid number and viscosity. A transesterification was done to transform the triglycerides into their corresponding methyl esters of fatty acids. These was submitted the molecular distillation process, for present as an efficient alternative to separation and purification of these substances, using high vacuum and low temperatures. Of the esters fractions that was obtained, were analyzed by gas chromatography. The experimental design technique was used to evaluate the influence of the temperature variation of evaporation and condensation system on the percentage obtained residue. The evaporator temperature proved to be the most influential variable on the studied response. The optimized conditions for the answer was studied at 100 °C for evaporator temperature and 10 °C for the condenser temperature. The graph of "split ratio" showed that for the lowest flow feed (1 mL/min) and higher evaporator temperature (110 °C) was obtained in the largest fraction of distillate. It also used the study of the influence of evaporator temperature on the concentration of unsaturated compounds. The best operating conditions for temperature was 90 °C reached 82.21 % of unsaturated compounds. Elimination curves of the unsaturated compounds present in the distillate stream were obtained. The simulation results of the molecular distillation process of sunflower oil showed the concentration profiles for three different feed flow rates. The speed, temperature and thickness profiles of the liquid film were obtained. The speed of the film increases as the fluid flows through the walls of the evaporator, reaching a maximum on length of 0.075 m. The film thickness decreases on the route, since many compounds are volatilized. The result of the temperature profile had to be consistent with the literature reproduced, being constant after reaching the maximum operating temperature in the length of 0.15 m. This study allowed characterizing and focusing, through experimental analysis, unsaturated compounds and observing the sunflower oil´s behavior through process simulation.
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.