999 resultados para array processing
Resumo:
Chlorogenic acids (CGA) are a class of polyphenols noted for their health benefits. These compounds were identified and quantified, using LC–MS and HPLC, in commercially available coffees which varied in pro- cessing conditions. Analysis of ground and instant coffees indicated the presence of caffeoylquinic acids (CQA), feruloylquinic acids (FQA) and dicaffeoylquinic acids (diCQA) in all 18 samples tested. 5-CQA was present at the highest levels, between 25 and 30% of total CGA; subsequent relative quantities were: 4- CQA > 3-CQA > 5-FQA > 4-FQA > diCQA (sum of 3,4, 3,5 and 4,5-diCQA). CGA content varied greatly (27.33–121.25 mg/200 ml coffee brew), driven primarily by the degree of coffee bean roasting (a high amount of roasting had a detrimental effect on CGA content). These results highlight the broad range of CGA quantity in commercial coffee and demonstrate that coffee choice is important in delivering opti-mum CGA intake to consumers.
Resumo:
Hybrid multiprocessor architectures which combine re-configurable computing and multiprocessors on a chip are being proposed to transcend the performance of standard multi-core parallel systems. Both fine-grained and coarse-grained parallel algorithm implementations are feasible in such hybrid frameworks. A compositional strategy for designing fine-grained multi-phase regular processor arrays to target hybrid architectures is presented in this paper. The method is based on deriving component designs using classical regular array techniques and composing the components into a unified global design. Effective designs with phase-changes and data routing at run-time are characteristics of these designs. In order to describe the data transfer between phases, the concept of communication domain is introduced so that the producer–consumer relationship arising from multi-phase computation can be treated in a unified way as a data routing phase. This technique is applied to derive new designs of multi-phase regular arrays with different dataflow between phases of computation.
Resumo:
An important constraint on how hemodynamic neuroimaging signals such as fMRI can be interpreted in terms of the underlying evoked activity is an understanding of neurovascular coupling mechanisms that actually generate hemodynamic responses. The predominant view at present is that the hemodynamic response is most correlated with synaptic input and subsequent neural processing rather than spiking output. It is still not clear whether input or processing is more important in the generation of hemodynamics responses. In order to investigate this we measured the hemodynamic and neural responses to electrical whisker pad stimuli in rat whisker barrel somatosensory cortex both before and after the local cortical injections of the GABAA agonist muscimol. Muscimol would not be expected to affect the thalamocortical input into the cortex but would inhibit subsequent intra-cortical processing. Pre-muscimol infusion whisker stimuli elicited the expected neural and accompanying hemodynamic responses to that reported previously. Following infusion of muscimol, although the temporal profile of neural responses to each pulse of the stimulus train was similar, the average response was reduced in magnitude by ∼79% compared to that elicited pre-infusion. The whisker-evoked hemodynamic responses were reduced by a commensurate magnitude suggesting that, although the neurovascular coupling relationships were similar for synaptic input as well as for cortical processing, the magnitude of the overall response is dominated by processing rather than from that produced from the thalamocortical input alone.
Resumo:
Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.
Resumo:
The demand for plant material of Rhodiola rosea L. (Crassulaceae) for medicinal use has increased recently, amid concerns about its quality and sustainability. We have analysed the content of phenylpropanoids (total rosavins) and salidroside in liquid extracts from 3-year old cultivated plants of European origin, and mapped the influence of plant part (rhizome versus root), genotype, drying, cutting, and extraction solvent to chemical composition. Rhizomes contained 1.5-4 times more salidroside (0.3-0.4% dry wt) and total rosavins (1.2-3.0%) than roots. The qualitative decisive phenylpropanoid content in the extracts was most influenced by plant part, solvent, and genotype, while drying temperature and cutting conditions were of less importance. We have shown that R. rosea from different boreal European provenances can be grown under temperate conditions and identified factors to obtain consistent high quality extracts provided that authentic germplasm is used and distinguished between rhizome, roots and their mixtures.
Resumo:
The increasing amount of available expressed gene sequence data makes whole-transcriptome analysis of certain crop species possible. Potato currently has the second largest number of publicly available expressed sequence tag (EST) sequences among the Solanaceae. Most of these ESTs, plus other proprietary sequences, were combined and used to generate a unigene assembly. The set of 246,182 sequences produced 46,345 unigenes, which were used to design a 44K 60-mer oligo array (Potato Oligo Chip Initiative: POCI). In this study, we attempt to identify genes controlling and driving the process of tuber initiation and growth by implementing large-scale transcriptional changes using the newly developed POCI array. Major gene expression profiles could be identified exhibiting differential expression at key developmental stages. These profiles were associated with functional roles in cell division and growth. A subset of genes involved in the regulation of the cell cycle, based on their Gene Ontology classification, exhibit a clear transient upregulation at tuber onset indicating increased cell division during these stages. The POCI array allows the study of potato gene expression on a much broader level than previously possible and will greatly enhance analysis of transcriptional control mechanisms in a wide range of potato research areas. POCI sequence and annotation data are publicly available through the POCI database (http://pgrc.ipk-gatersleben.de/poci).
Resumo:
Affymetrix GeneChip (R) arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip (R) arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip (R) arrays whose probes are localised primarily in 39 exons. Plant whole-transcript (WT) GeneChip (R) arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip (R) Brassica Exon 1.0 ST Array is a 5 mu M feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5), with <= 98 sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18), and categorisation by Gene Ontologies (GO) based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.
Resumo:
In this paper we present a compliant neural interface designed to record bladder afferent activity. We developed the implant's microfabrication process using multiple layers of silicone rubber and thin metal so that a gold microelectrode array is embedded within four parallel polydimethylsiloxane (PDMS) microchannels (5 mm long, 100 μm wide, 100 μm deep). Electrode impedance at 1 kHz was optimized using a reactive ion etching (RIE) step, which increased the porosity of the electrode surface. The electrodes did not deteriorate after a 3 month immersion in phosphate buffered saline (PBS) at 37 °C. Due to the unique microscopic topography of the metal film on PDMS, the electrodes are extremely compliant and can withstand handling during implantation (twisting and bending) without electrical failure. The device was transplanted acutely to anaesthetized rats, and strands of the dorsal branch of roots L6 and S1 were surgically teased and inserted in three microchannels under saline immersion to allow for simultaneous in vivo recordings in an acute setting. We utilized a tripole electrode configuration to maintain background noise low and improve the signal to noise ratio. The device could distinguish two types of afferent nerve activity related to increasing bladder filling and contraction. To our knowledge, this is the first report of multichannel recordings of bladder afferent activity.
Resumo:
Recent research indicates gender differences in the impact of stress on decision behavior, but little is known about the brain mechanisms involved in these gender-specific stress effects. The current study used functional magnetic resonance imaging (fMRI) to determine whether induced stress resulted in gender-specific patterns of brain activation during a decision task involving monetary reward. Specifically, we manipulated physiological stress levels using a cold pressor task, prior to a risky decision making task. Healthy men (n = 24, 12 stressed) and women (n = 23, 11 stressed) completed the decision task after either cold pressor stress or a control task during the period of cortisol response to the cold pressor. Gender differences in behavior were present in stressed participants but not controls, such that stress led to greater reward collection and faster decision speed in males but less reward collection and slower decision speed in females. A gender-by-stress interaction was observed for the dorsal striatum and anterior insula. With cold stress, activation in these regions was increased in males but decreased in females. The findings of this study indicate that the impact of stress on reward-related decision processing differs depending on gender.
Resumo:
We are reporting on the fabrication and electrical characterization of a novel elastomer based micro-cuff neural interface. Electrodes are gold (Au) tracks of sub-100nm thickness and are thermally evaporated on a 0.5 mm thick polydimethylsiloxane (PDMS) substrate. We investigate how electrode area and immersion in phosphate buffered saline (PBS) at 37°C influence electrode impedance. A microfluidic channel is bonded to the electrode array to form the cuff. In an acute, in-vivo, proof-of-principle recording, the device is capable of detecting light stroking and pinch of a hind leg of an anaesthetized rat.
Resumo:
We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.
Resumo:
Background: The interpretation of ambiguous subject pronouns in a null subject language, like Greek, requires that one possesses grammatical knowledge of the two subject pronominal forms, i.e., null and overt, and that discourse constraints regulating the distribution of the two pronouns in context are respected. Aims: We investigated whether the topic-shift feature encoded in overt subject pronouns would exert similar interpretive effects in a group of seven participants with Broca’s aphasia and a group of language-unimpaired adults during online processing of null and overt subject pronouns in referentially ambiguous contexts. Method & Procedures: An offline picture–sentence matching task was initially administered to investigate whether the participants with Broca’s aphasia had access to the gender and number features of clitic pronouns. An online self-paced listening picture-verification task was subsequently administered to examine how the aphasic individuals resolve pronoun ambiguities in contexts with either null or overt subject pronouns and how their performance compares to that of language-unimpaired adults. Outcomes & Results: Results demonstrate that the Broca group, along with controls, had intact access to the morphosyntactic features of clitic pronouns. However, the aphasic individuals showed decreased preference for non-salient antecedents in object position during the online resolution of ambiguous overt subject pronouns and preferred to pick the subject antecedent instead. Conclusions: Broca’s aphasic participants’ parsing decisions in the online task reflect their difficulty with establishing topic-shifted interpretations of the ambiguous overt subject pronouns. The presence of a local topic-shift effect in the immediate temporal vicinity of the overt pronoun suggests that sensitivity to the marked informational status of overt pronouns is preserved in the aphasic individuals, yet, it is blocked under conditions of global sentential processing.
Resumo:
The experience of learning and using a second language (L2) has been shown to affect the grey matter (GM) structure of the brain. Importantly, GM density in several cortical and subcortical areas has been shown to be related to performance in L2 tasks. Here we show that bilingualism can lead to increased GM volume in the cerebellum, a structure that has been related to the processing of grammatical rules. Additionally, the cerebellar GM volume of highly proficient L2 speakers is correlated to their performance in a task tapping on grammatical processing in a L2, demonstrating the importance of the cerebellum for the establishment and use of grammatical rules in a L2.
Resumo:
Using the eye movement monitoring technique, the present study examined whether wh-dependency formation is sensitive to island constraints in second language (L2) sentence comprehension, and whether the presence of an intervening relative clause island has any effects on learners’ ability to ultimately resolve long wh-dependencies. Participants included proficient learners of L2 English from typologically different language backgrounds (German, Chinese), as well as a group of native English-speaking controls. Our results indicate that both the learners and the native speakers were sensitive to relative clause islands during processing, irrespective of typological differences between the learners’ L1s, but that the learners had more difficulty than native speakers linking distant wh-fillers to their lexical subcategorizers during processing. We provide a unified processing-based account for our findings.
Resumo:
Using the eye-movement monitoring technique in two reading comprehension experiments, we investigated the timing of constraints on wh-dependencies (so-called ‘island’ constraints) in native and nonnative sentence processing. Our results show that both native and nonnative speakers of English are sensitive to extraction islands during processing, suggesting that memory storage limitations affect native and nonnative comprehenders in essentially the same way. Furthermore, our results show that the timing of island effects in native compared to nonnative sentence comprehension is affected differently by the type of cue (semantic fit versus filled gaps) signalling whether dependency formation is possible at a potential gap site. Whereas English native speakers showed immediate sensitivity to filled gaps but not to lack of semantic fit, proficient German-speaking learners of L2 English showed the opposite sensitivity pattern. This indicates that initial wh-dependency formation in nonnative processing is based on semantic feature-matching rather than being structurally mediated as in native comprehension.