939 resultados para apoptosis regulatory protein
Resumo:
Philadelphia chromosome-positive leukemias result from the fusion of the BCR and ABL genes, which generates a functional chimeric molecule. The Abr protein is very similar to Bcr but lacks a structural domain which may influence its biological regulatory capabilities. Both Abr and Bcr have a GTPase-activating protein (GAP) domain similar to those found in other proteins that stimulate GTP hydrolysis by members of the Rho family of GTP-binding proteins, as well as a region of homology with the guanine nucleotide dissociation-stimulating domain of the DBL oncogene product. We purified as recombinant fusion proteins the GAP- and Dbl-homology domains of both Abr and Bcr. The Dbl-homology domains of Bcr and Abr were active in stimulating GTP binding to CDC42Hs, RhoA, Rac1, and Rac2 (rank order, CDC42Hs > RhoA > Rac1 = Rac2) but were inactive toward Rap1A and Ha-Ras. Both Bcr and Abr acted as GAPs for Rac1, Rac2, and CDC42Hs but were inactive toward RhoA, Rap1A, and Ha-Ras. Each individual domain bound in a noncompetitive manner to GTP-binding protein substrates. These data suggest the multifunctional Bcr and Abr proteins might interact simultaneously and/or sequentially with members of the Rho family to regulate and coordinate cellular signaling.
Resumo:
We recently isolated human cDNA fragments that render MCF-7 breast cancer cells resistant to cell death caused by Pseudomonas exotoxin, Pseudomonas exotoxin-derived immunotoxins, diphtheria toxin, and tumor necrosis factor. We report here that one of these fragments is an antisense fragment of a gene homologous to the essential yeast chromosome segregation gene CSE1. Cloning and analysis of the full-length cDNA of the human CSE1 homologue, which we name CAS for cellular apoptosis susceptibility gene, reveals a protein coding region with similar length (971 amino acids for CAS, 960 amino acids for CSE1) and 59% overall protein homology to the yeast CSE1 protein. The conservation of this gene indicates it has an important function in human cells consistent with the essential role of CSE1 in yeast. CAS is highly expressed in human tumor cell lines and in human testis and fetal liver, tissues that contain actively dividing cells. Furthermore, CAS expression increases when resting human fibroblasts are induced to proliferate and decreases when they are growth-arrested. Thus, CAS appears to play an important role in both toxin and tumor necrosis factor-mediated cell death, as well as in cell proliferation.
Resumo:
The yeast two-hybrid system and far-Western protein blot analysis were used to demonstrate dimerization of human double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in vivo and in vitro. A catalytically inactive mutant of PKR with a single amino acid substitution (K296R) was found to dimerize in vivo, and a mutant with a deletion of the catalytic domain of PKR retained the ability to dimerize. In contrast, deletion of the two dsRNA-binding motifs in the N-terminal regulatory domain of PKR abolished dimerization. In vitro dimerization of the dsRNA-binding domain required the presence of dsRNA. These results suggest that the binding of dsRNA by PKR is necessary for dimerization. The mammalian dsRNA-binding protein TRBP, originally identified on the basis of its ability to bind the transactivation region (TAR) of human immunodeficiency virus RNA, also dimerized with itself and with PKR in the yeast assay. Taken together, these results suggest that complexes consisting of different combinations of dsRNA-binding proteins may exist in vivo. Such complexes could mediate differential effects on gene expression and control of cell growth.
Resumo:
CD19 receptor is expressed at high levels on human B-lineage lymphoid cells and is physically associated with the Src protooncogene family protein-tyrosine kinase Lyn. Recent studies indicate that the membrane-associated CD19-Lyn receptor-enzyme complex plays a pivotal role for survival and clonogenicity of immature B-cell precursors from acute lymphoblastic leukemia patients, but its significance for mature B-lineage lymphoid cells (e.g., B-lineage lymphoma cells) is unknown. CD19-associated Lyn kinase can be selectively targeted and inhibited with B43-Gen, a CD19 receptor-specific immunoconjugate containing the naturally occurring protein-tyrosine kinase inhibitor genistein (Gen). We now present experimental evidence that targeting the membrane-associated CD19-Lyn complex in vitro with B43-Gen triggers rapid apoptotic cell death in highly radiation-resistant p53-Bax- Ramos-BT B-lineage lymphoma cells expressing high levels of Bcl-2 protein without affecting the Bcl-2 expression level. The therapeutic potential of this membrane-directed apoptosis induction strategy was examined in a scid mouse xenograft model of radiation-resistant high-grade human B-lineage lymphoma. Remarkably, in vivo treatment of scid mice challenged with an invariably fatal number of Ramos-BT cells with B43-Gen at a dose level < 1/10 the maximum tolerated dose resulted in 70% long-term event-free survival. Taken together, these results provide unprecedented evidence that the membrane-associated anti-apoptotic CD19-Lyn complex may be at least as important as Bcl-2/Bax ratio for survival of lymphoma cells.
Resumo:
We have identified and further characterized a Caenorhabditis elegans gene, CEZF, that encodes a protein with substantial homology to the zinc finger and leucine zipper motifs of the human gene products AF10, MLLT6, and BR140. The first part of the zinc finger region of CEZF has strong similarity to the corresponding regions of AF10 (66%) and MLLT6 (64%) at the cDNA level. As this region is structurally different from previously described zinc finger motifs, sequence homology searches were done. Twenty-five other proteins with a similar motif were identified. Because the functional domain of this motif is potentially disrupted in leukemia-associated chromosomal translocations, we propose the name of leukemia-associated protein (LAP) finger. On the basis of these comparisons, the LAP domain consensus sequence is Cys1-Xaa1-2-Cys2-Xaa9-21-Cys3-Xaa2-4 -Cys4-Xaa4-5-His5-Xaa2-Cys6-Xaa12-46 - Cys7-Xaa2-Cys8, where subscripted numbers represent the number of amino acid residues. We review the evidence that this motif binds zinc, is the important DNA-binding domain in this group of regulatory proteins, and may be involved in leukemogenesis.
Resumo:
DNA-damaging agents induce accumulation of the tumor suppressor and G1 checkpoint protein p53, leading cells to either growth arrest in G1 or apoptosis (programmed cell death). The p53-dependent G1 arrest involves induction of p21 (also called WAF1/CIP1/SDI1), which prevents cyclin kinase-mediated phosphorylation of retinoblastoma protein (RB). Recent studies suggest a p53-independent G1 checkpoint as well; however, little is known about its molecular mechanisms. We report that induction of a protein-serine/threonine phosphatase activity by DNA damage signals is at least one of the mechanisms responsible for p53-independent, RB-mediated G1 arrest and consequent apoptosis. When two p53-null human leukemic cell lines (HL-60 and U-937) were treated with a variety of anticancer agents, RB became hypophosphorylated, accompanied with G1 arrest. This was followed immediately (in less than 30 min) by apoptosis, as determined by the accumulation of pre-G1 apoptotic cells and the internucleosomal fragmentation of DNA. Addition of calyculin A or okadaic acid (specific serine/threonine phosphatase inhibitors) or zinc chloride (apoptosis inhibitor) prevented the G1 arrest- and apoptosis-specific RB dephosphorylation. The levels of cyclin E- and cyclin A-associated kinase activities remained high during RB dephosphorylation, supporting the involvement of a chemotherapy-induced serine/threonine phosphatase(s) rather than p21. Furthermore, the induced phosphatase activity coimmunoprecipitated with the hyperphosphorylated RB and was active in a cell-free system that reproduced the growth arrest- and apoptosis-specific RB dephosphorylation, which was inhibitable by calyculin A but not zinc. We propose that the RB phosphatase(s) might be one of the p53-independent G1 checkpoint regulators.
Resumo:
Protein kinase C (PKC) is involved in the proliferation and differentiation of many cell types. In human erythroleukemia (K-562) cells, the PKC isoforms alpha and beta II play distinct functional roles. alpha PKC is involved in phorbol 12-myristate 13-acetate-induced cytostasis and megakaryocytic differentiation, whereas beta II PKC is required for proliferation. To identify regions within alpha and beta II PKC that allow participation in these divergent pathways, we constructed chimeras in which the regulatory and catalytic domains of alpha and beta II PKC were exchanged. These PKC chimeras can be stably expressed, exhibit enzymatic properties similar to native alpha and beta II PKC in vitro, and participate in alpha and beta II PKC isotype-specific pathways in K-562 cells. Expression of the beta/alpha PKC chimera induces cytostasis in the same manner as overexpression of wild-type alpha PKC. In contrast, the alpha/beta II PKC chimera, like wild-type beta II PKC, selectively translocates to the nucleus and leads to increased phosphorylation of the nuclear envelope polypeptide lamin B in response to bryostatin-1. Therefore, the catalytic domains of alpha and beta II PKC contain determinants important for alpha and beta II PKC isotype function. These results suggest that the catalytic domain represents a potential target for modulating PKC isotype activity in vivo.
Resumo:
The cAMP-dependent protein kinase (PKA) has been shown to play an important role in long-term potentiation (LTP) in the hippocampus, but little is known about the function of PKA in long-term depression (LTD). We have combined pharmacologic and genetic approaches to demonstrate that PKA activity is required for both homosynaptic LTD and depotentiation and that a specific neuronal isoform of type I regulatory subunit (RI beta) is essential. Mice carrying a null mutation in the gene encoding RI beta were established by use of gene targeting in embryonic stem cells. Hippocampal slices from mutant mice show a severe deficit in LTD and depotentiation at the Schaffer collateral-CA1 synapse. This defect is also evident at the lateral perforant path-dentate granule cell synapse in RI beta mutant mice. Despite a compensatory increase in the related RI alpha protein and a lack of detectable changes in total PKA activity, the hippocampal function in these mice is not rescued, suggesting a unique role for RI beta. Since the late phase of CA1 LTP also requires PKA but is normal in RI beta mutant mice, our data further suggest that different forms of synaptic plasticity are likely to employ different combinations of regulatory and catalytic subunits.
Resumo:
Osmoregulated porin gene expression in Escherichia coli is controlled by the two-component regulatory system EnvZ and OmpR. EnvZ, the osmosensor, is an inner membrane protein and a histidine kinase. EnvZ phosphorylates OmpR, a cytoplasmic DNA-binding protein, on an aspartyl residue. Phospho-OmpR binds to the promoters of the porin genes to regulate the expression of ompF and ompC. We describe the use of limited proteolysis by trypsin and ion spray mass spectrometry to characterize phospho-OmpR and the conformational changes that occur upon phosphorylation. Our results are consistent with a two-domain structure for OmpR, an N-terminal phosphorylation domain joined to a C-terminal DNA-binding domain by a flexible linker region. In the presence of acetyl phosphate, OmpR is phosphorylated at only one site. Phosphorylation induces a conformational change that is transmitted to the C-terminal domain via the central linker. Previous genetic analysis identified a region in the C-terminal domain that is required for transcriptional activation. Our results indicate that this region is within a surface-exposed loop. We propose that this loop contacts the alpha subunit of RNA polymerase to activate transcription. Mass spectrometry also reveals an unusual dephosphorylated form of OmpR, the potential significance of which is discussed.
Resumo:
Metazoan cyclin C was originally isolated by virtue of its ability to rescue Saccharomyces cerevisiae cells deficient in G1 cyclin function. This suggested that cyclin C might play a role in cell cycle control, but progress toward understanding the function of this cyclin has been hampered by the lack of information on a potential kinase partner. Here we report the identification of a human protein kinase, K35 [cyclin-dependent kinase 8 (CDK8)], that is likely to be a physiological partner of cyclin C. A specific interaction between K35 and cyclin C could be demonstrated after translation of CDKs and cyclins in vitro. Furthermore, cyclin C could be detected in K35 immunoprecipitates prepared from HeLa cells, indicating that the two proteins form a complex also in vivo. The K35-cyclin C complex is structurally related to SRB10-SRB11, a CDK-cyclin pair recently shown to be part of the RNA polymerase II holoenzyme of S. cerevisiae. Hence, we propose that human K35(CDK8)-cyclin C might be functionally associated with the mammalian transcription apparatus, perhaps involved in relaying growth-regulatory signals.
Resumo:
We report here that the activation of the interleukin 1 beta (IL-1 beta)-converting enzyme (ICE) family is likely to be one of the crucial events of tumor necrosis factor (TNF) cytotoxicity. The cowpox virus CrmA protein, a member of the serpin superfamily, inhibits the enzymatic activity of ICE and ICE-mediated apoptosis. HeLa cells overexpressing crmA are resistant to apoptosis induced by Ice but not by Ich-1, another member of the Ice/ced-3 family of genes. We found that the CrmA-expressing HeLa cells are resistant to TNF-alpha/cycloheximide (CHX)-induced apoptosis. Induction of apoptosis in HeLa cells by TNF-alpha/CHX is associated with secretion of mature IL-1 beta, suggesting that an IL-1 beta-processing enzyme, most likely ICE itself, is activated by TNF-alpha/CHX stimulation. These results suggest that one or more members of the ICE family sensitive to CrmA inhibition are activated and play a critical role in apoptosis induced by TNF.
Resumo:
The bithorax complex (BX-C) of Drosophila, one of two complexes that act as master regulators of the body plan of the fly, has now been entirely sequenced and comprises approximately 315,000 bp, only 1.4% of which codes for protein. Analysis of this sequence reveals significantly overrepresented DNA motifs of unknown, as well as known, functions in the non-protein-coding portion of the sequence. The following types of motifs in that portion are analyzed: (i) concatamers of mono-, di-, and trinucleotides; (ii) tightly clustered hexanucleotides (spaced < or = 5 bases apart); (iii) direct and reverse repeats longer than 20 bp; and (iv) a number of motifs known from biochemical studies to play a role in the regulation of the BX-C. The hexanucleotide AGATAC is remarkably overrepresented and is surmised to play a role in chromosome pairing. The positions of sites of highly overrepresented motifs are plotted for those that occur at more than five sites in the sequence, when < 0.5 case is expected. Expected values are based on a third-order Markov chain, which is the optimal order for representing the BXCALL sequence.
Resumo:
Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis.
Resumo:
Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.
Resumo:
Hypoxia/reoxygenation is an important cause of tissue injury in a variety of organs and is classically considered to be a necrotic form of cell death. We examined the role of endonuclease activation, considered a characteristic feature of apoptosis, in hypoxia/reoxygenation injury. We demonstrate that subjecting rat renal proximal tubules to hypoxia/reoxygenation results in DNA strand breaks and DNA fragmentation (both by an in situ technique and by agarose gel electrophoresis), which precedes cell death. Hypoxia/reoxygenation resulted in an increase in DNA-degrading activity with an apparent molecular mass of 15 kDa on a substrate gel. This DNA-degrading activity was entirely calcium dependent and was blocked by the endonuclease inhibitor aurintricarboxylic acid. The protein extract from tubules subjected to hypoxia/reoxygenation cleaved intact nuclear DNA obtained from normal proximal tubules into small fragments, which further supports the presence of endonuclease activity. Despite unequivocal evidence of endonuclease activation, the morphologic features of apoptosis, including chromatin condensation, were not observed by light and electron microscopy. Endonuclease inhibitors, aurintricarboxylic acid and Evans blue, provided complete protection against DNA damage induced by hypoxia/reoxygenation but only partial protection against cell death. Taken together, our data provide strong evidence for a role of endonuclease activation as an early event, which is entirely responsible for the DNA damage and partially responsible for the cell death that occurs during hypoxia/reoxygenation injury. Our data also indicate that in hypoxia/reoxygenation injury endonuclease activation and DNA fragmentation occur without the morphological features of apoptosis.