947 resultados para agricultural aviation
Resumo:
Based mainly on secondary data and partly on primary information obtained through field surveys in selected rural areas in Bihar in 2011, this paper firstly argues the critical importance of agricultural growth for overall economic development, and then reviews the sluggish growth of agriculture in Bihar in the past and examines the major reasons for this. The long-term negligence of agricultural research (especially development and diffusion endeavors for improved rice varieties suitable to the local conditions of Bihar) by the state government and some sort of ‘backwardness’ in tube-well irrigation technology can be pointed out as important constraints. There is, in particular, the ‘paradox’ in Bihar agriculture of why rice and wheat yields have remained so low in spite of the relatively well-developed irrigation by tube-wells. Finally, by showing the process of a rapid increase in autumn and winter rice yields during the 1990s in West Bengal, it is suggested that Bihar farmers and policy-makers should learn from the experience of West Bengal in order to get some hints for the development of the rice sector in Bihar.
Resumo:
This paper explores the extent and forms of black economic empowerment (BEE) in the South African agricultural sector through a case study of the wine industry in the Western Cape. Compared to the mining and fisheries sectors, the progress of BEE in the agricultural sector is still in the early stage. However, various forms of black entry into the wine industry, not limited to BEE deals by large corporations, began to emerge, especially since the enactment of the Broad-based Black Economic Empowerment Act (BBBEE Act), Act 53 of 2003. This paper identifies two types of BEE wineries as unique forms of black entry into the wine industry and investigates in detail their features, backgrounds and challenges by referring to several prominent examples of each type of BEE winery.
Resumo:
Agricultural cooperatives in China, known as Farmers' Professional Cooperatives (FPCs), are becoming popular and have been intensely promoted by the Chinese government to improve the economic welfare of small farmers. However, very few studies on Chinese agricultural cooperatives have measured the benefits to farmers who participate in FPCs after controlling for time-invariant attributes of farmers. This paper investigates the treatment effect of participation in a rice-producing cooperative in suburban China using propensity score matching (PSM) and difference-in-differences (DID) method. Estimated results show that no significant difference is observed between participants and non-participants of the cooperative in terms of net income from rice production when controlling for the difference in farmers' rice incomes before the treatment. In addition, there is no significant heterogeneity of the treatment effects between large and small farmers, although the probability of participation in the cooperative is significantly higher when the size of cultivated rice farmland is greater. These results indicate that the benefits of the cooperative appear to be overestimated considering the vigorous policy supports for FPCs from the Chinese government.
Resumo:
Chinese agricultural cooperatives, called Farmer's Professional Cooperatives (FPCs), are expected to become a major tool to facilitate agro-industrialization for small farmers through the diffusion of new technologies, the supply of high-quality agricultural inputs and the marketing of their products. This study compares FPC participants with vegetable-producing non-participants and grain farmers in vegetable-producing areas in rural China to investigate the treatment effect of participation in FPCs as well as implementation of vegetable cultivation. I adopt parametric and nonparametric approaches to precisely estimate the treatment effects. Estimated results indicate no significant difference between participants and non-participants of FPCs on agricultural net income in both parametric and non-parametric estimations. In contrast, the comparison between vegetable and grain farmers using propensity score matching (PSM) reveals that the treatment effect of vegetable cultivation is significantly positive for total and agricultural incomes, although vegetable cultivation involves more labor-intensive efforts. These results indicate that it is the implementation of vegetable cultivation rather than the participation in an FPC that enhances the economic welfare of farmers, due to the non-excludability of FPCs' services as well as the risks involved in vegetable cultivation.
Resumo:
Forest connectivity restoration is a major goal in natural resource planning. Given the high amount of abandoned cultivated lands, setting efficient methods for the reforestation of agricultural lands offers a good opportunity to face this issue. However, reforestations must be carefully planned, which poses two main challenges. In first place, to determine those agricultural lands that, once reforested, would meet more effectively the planning goals. As a further step, in order to grant the success of the activity, it is fairly advisable to select those tree species that are more adapted to each particular environment. Here we intend to give response to both requirements by proposing a sequential and integrated methodology that has been implemented in two Spanish forest districts, which are formed by several landscape types that were previously defined and characterized. Using the software Conefor Sensinode, a powerful tool for quantifying habitat availability that is based on graph theory concepts, we determined the landscapes where forest planning should have connectivity as a major concern and, afterwards, we detected the agricultural patches that would contribute most to enhance connectivity if they were reforested. The subsequent reforestation species assessment was performed within these priority patches. Using penalized logistic regressions we fitted ecological niche models for the Spanish native tree species. The models were trained with species distribution data from the Spanish Forest Map and used climatic and lithological variables as predictors. Model predictions were used to build ordered lists of suitable species for each priority patch. The lists include dominant and non dominant tree species and allow adding biodiversity goals to the reforestation planning. The result of this combined methodology is a map of agricultural patches that would contribute most to uphold forest connectivity if they were reforested and a list of suitable tree species for each patch ordered by occurrence probability. Therefore the proposed methodology may be useful for suitable and efficient forest planning and landscape designing.
Resumo:
Se propone una metodología que nos permita evaluar un óptimo manejo de la fertirrigación integrando aspectos agronómicos y medioambientales.
Resumo:
International agricultural trade has been growing significantly during the last decade. Many countries rely on imports to ensure adequate food supplies to the people. A few are becoming food baskets of the world. This process raises issues about the food security in depending countries and potentially unsustainable land and water use in exporting countries. In this paper, we analyse the impacts of amplified farm trade on natural resources, especially water. Farm exports and imports of five Latin America countries (Brazil, Argentina, Mexico, Peru and Chile) are examined carefully. A preliminary analysis indicates that virtual water imports can save valuable water resources in water-short countries, such as Mexico and Chile. Major exporting countries, including Brazil and Argentina, have become big exporters due to abundant natural resource endowments. The opportunity costs of agricultural production in those countries are identified as being low, because of the predominant green water use. It is concluded that virtual water trade can be a powerful tool to alleviate water stress in semi-arid countries. However, for exporting nations a sustainable water use can only be guaranteed if environmental production costs are fully reflected in the commodity prices. There is no basis for erecting environmental trade tariffs on exporters though. Setting up legal foundations for them in full compliance with WTOs processes would be a daunting task.
Resumo:
RESUMEN La dispersión del amoniaco (NH3) emitido por fuentes agrícolas en medias distancias, y su posterior deposición en el suelo y la vegetación, pueden llevar a la degradación de ecosistemas vulnerables y a la acidificación de los suelos. La deposición de NH3 suele ser mayor junto a la fuente emisora, por lo que los impactos negativos de dichas emisiones son generalmente mayores en esas zonas. Bajo la legislación comunitaria, varios estados miembros emplean modelos de dispersión inversa para estimar los impactos de las emisiones en las proximidades de las zonas naturales de especial conservación. Una revisión reciente de métodos para evaluar impactos de NH3 en distancias medias recomendaba la comparación de diferentes modelos para identificar diferencias importantes entre los métodos empleados por los distintos países de la UE. En base a esta recomendación, esta tesis doctoral compara y evalúa las predicciones de las concentraciones atmosféricas de NH3 de varios modelos bajo condiciones, tanto reales como hipotéticas, que plantean un potencial impacto sobre ecosistemas (incluidos aquellos bajo condiciones de clima Mediterráneo). En este sentido, se procedió además a la comparación y evaluación de varias técnicas de modelización inversa para inferir emisiones de NH3. Finalmente, se ha desarrollado un modelo matemático simple para calcular las concentraciones de NH3 y la velocidad de deposición de NH3 en ecosistemas vulnerables cercanos a una fuente emisora. La comparativa de modelos supuso la evaluación de cuatro modelos de dispersión (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 y LADD v2010) en un amplio rango de casos hipotéticos (dispersión de NH3 procedente de distintos tipos de fuentes agrícolas de emisión). La menor diferencia entre las concentraciones medias estimadas por los distintos modelos se obtuvo para escenarios simples. La convergencia entre las predicciones de los modelos fue mínima para el escenario relativo a la dispersión de NH3 procedente de un establo ventilado mecánicamente. En este caso, el modelo ADMS predijo concentraciones significativamente menores que los otros modelos. Una explicación de estas diferencias podríamos encontrarla en la interacción de diferentes “penachos” y “capas límite” durante el proceso de parametrización. Los cuatro modelos de dispersión fueron empleados para dos casos reales de dispersión de NH3: una granja de cerdos en Falster (Dinamarca) y otra en Carolina del Norte (EEUU). Las concentraciones medias anuales estimadas por los modelos fueron similares para el caso americano (emisión de granjas ventiladas de forma natural y balsa de purines). La comparación de las predicciones de los modelos con concentraciones medias anuales medidas in situ, así como la aplicación de los criterios establecidos para la aceptación estadística de los modelos, permitió concluir que los cuatro modelos se comportaron aceptablemente para este escenario. No ocurrió lo mismo en el caso danés (nave ventilada mecánicamente), en donde el modelo LADD no dio buenos resultados debido a la ausencia de procesos de “sobreelevacion de penacho” (plume-rise). Los modelos de dispersión dan a menudo pobres resultados en condiciones de baja velocidad de viento debido a que la teoría de dispersión en la que se basan no es aplicable en estas condiciones. En situaciones de frecuente descenso en la velocidad del viento, la actual guía de modelización propone usar un modelo que sea eficaz bajo dichas condiciones, máxime cuando se realice una valoración que tenga como objeto establecer una política de regularización. Esto puede no ser siempre posible debido a datos meteorológicos insuficientes, en cuyo caso la única opción sería utilizar un modelo más común, como la versión avanzada de los modelos Gausianos ADMS o AERMOD. Con el objetivo de evaluar la idoneidad de estos modelos para condiciones de bajas velocidades de viento, ambos modelos fueron utilizados en un caso con condiciones Mediterráneas. Lo que supone sucesivos periodos de baja velocidad del viento. El estudio se centró en la dispersión de NH3 procedente de una granja de cerdos en Segovia (España central). Para ello la concentración de NH3 media mensual fue medida en 21 localizaciones en torno a la granja. Se realizaron también medidas de concentración de alta resolución en una única localización durante una campaña de una semana. En este caso, se evaluaron dos estrategias para mejorar la respuesta del modelo ante bajas velocidades del viento. La primera se basó en “no zero wind” (NZW), que sustituyó periodos de calma con el mínimo límite de velocidad del viento y “accumulated calm emissions” (ACE), que forzaban al modelo a calcular las emisiones totales en un periodo de calma y la siguiente hora de no-calma. Debido a las importantes incertidumbres en los datos de entrada del modelo (inputs) (tasa de emisión de NH3, velocidad de salida de la fuente, parámetros de la capa límite, etc.), se utilizó el mismo caso para evaluar la incertidumbre en la predicción del modelo y valorar como dicha incertidumbre puede ser considerada en evaluaciones del modelo. Un modelo dinámico de emisión, modificado para el caso de clima Mediterráneo, fue empleado para estimar la variabilidad temporal en las emisiones de NH3. Así mismo, se realizó una comparativa utilizando las emisiones dinámicas y la tasa constante de emisión. La incertidumbre predicha asociada a la incertidumbre de los inputs fue de 67-98% del valor medio para el modelo ADMS y entre 53-83% del valor medio para AERMOD. La mayoría de esta incertidumbre se debió a la incertidumbre del ratio de emisión en la fuente (50%), seguida por la de las condiciones meteorológicas (10-20%) y aquella asociada a las velocidades de salida (5-10%). El modelo AERMOD predijo mayores concentraciones que ADMS y existieron más simulaciones que alcanzaron los criterios de aceptabilidad cuando se compararon las predicciones con las concentraciones medias anuales medidas. Sin embargo, las predicciones del modelo ADMS se correlacionaron espacialmente mejor con las mediciones. El uso de valores dinámicos de emisión estimados mejoró el comportamiento de ADMS, haciendo empeorar el de AERMOD. La aplicación de estrategias destinadas a mejorar el comportamiento de este último tuvo efectos contradictorios similares. Con el objeto de comparar distintas técnicas de modelización inversa, varios modelos (ADMS, LADD y WindTrax) fueron empleados para un caso no agrícola, una colonia de pingüinos en la Antártida. Este caso fue empleado para el estudio debido a que suponía la oportunidad de obtener el primer factor de emisión experimental para una colonia de pingüinos antárticos. Además las condiciones eran propicias desde el punto de vista de la casi total ausencia de concentraciones ambiente (background). Tras el trabajo de modelización existió una concordancia suficiente entre las estimaciones obtenidas por los tres modelos. De este modo se pudo definir un factor de emisión de para la colonia de 1.23 g NH3 por pareja criadora por día (con un rango de incertidumbre de 0.8-2.54 g NH3 por pareja criadora por día). Posteriores aplicaciones de técnicas de modelización inversa para casos agrícolas mostraron también un buen compromiso estadístico entre las emisiones estimadas por los distintos modelos. Con todo ello, es posible concluir que la modelización inversa es una técnica robusta para estimar tasas de emisión de NH3. Modelos de selección (screening) permiten obtener una rápida y aproximada estimación de los impactos medioambientales, siendo una herramienta útil para evaluaciones de impactos en tanto que permite eliminar casos que presentan un riesgo potencial de daño bajo. De esta forma, lo recursos del modelo pueden Resumen (Castellano) destinarse a casos en donde la posibilidad de daño es mayor. El modelo de Cálculo Simple de los Límites de Impacto de Amoniaco (SCAIL) se desarrolló para obtener una estimación de la concentración media de NH3 y de la tasa de deposición seca asociadas a una fuente agrícola. Está técnica de selección, basada en el modelo LADD, fue evaluada y calibrada con diferentes bases de datos y, finalmente, validada utilizando medidas independientes de concentraciones realizadas cerca de las fuentes. En general SCAIL dio buenos resultados de acuerdo a los criterios estadísticos establecidos. Este trabajo ha permitido definir situaciones en las que las concentraciones predichas por modelos de dispersión son similares, frente a otras en las que las predicciones difieren notablemente entre modelos. Algunos modelos nos están diseñados para simular determinados escenarios en tanto que no incluyen procesos relevantes o están más allá de los límites de su aplicabilidad. Un ejemplo es el modelo LADD que no es aplicable en fuentes con velocidad de salida significativa debido a que no incluye una parametrización de sobreelevacion del penacho. La evaluación de un esquema simple combinando la sobreelevacion del penacho y una turbulencia aumentada en la fuente mejoró el comportamiento del modelo. Sin embargo más pruebas son necesarias para avanzar en este sentido. Incluso modelos que son aplicables y que incluyen los procesos relevantes no siempre dan similares predicciones. Siendo las razones de esto aún desconocidas. Por ejemplo, AERMOD predice mayores concentraciones que ADMS para dispersión de NH3 procedente de naves de ganado ventiladas mecánicamente. Existe evidencia que sugiere que el modelo ADMS infraestima concentraciones en estas situaciones debido a un elevado límite de velocidad de viento. Por el contrario, existen evidencias de que AERMOD sobreestima concentraciones debido a sobreestimaciones a bajas Resumen (Castellano) velocidades de viento. Sin embrago, una modificación simple del pre-procesador meteorológico parece mejorar notablemente el comportamiento del modelo. Es de gran importancia que estas diferencias entre las predicciones de los modelos sean consideradas en los procesos de evaluación regulada por los organismos competentes. Esto puede ser realizado mediante la aplicación del modelo más útil para cada caso o, mejor aún, mediante modelos múltiples o híbridos. ABSTRACT Short-range atmospheric dispersion of ammonia (NH3) emitted by agricultural sources and its subsequent deposition to soil and vegetation can lead to the degradation of sensitive ecosystems and acidification of the soil. Atmospheric concentrations and dry deposition rates of NH3 are generally highest near the emission source and so environmental impacts to sensitive ecosystems are often largest at these locations. Under European legislation, several member states use short-range atmospheric dispersion models to estimate the impact of ammonia emissions on nearby designated nature conservation sites. A recent review of assessment methods for short-range impacts of NH3 recommended an intercomparison of the different models to identify whether there are notable differences to the assessment approaches used in different European countries. Based on this recommendation, this thesis compares and evaluates the atmospheric concentration predictions of several models used in these impact assessments for various real and hypothetical scenarios, including Mediterranean meteorological conditions. In addition, various inverse dispersion modelling techniques for the estimation of NH3 emissions rates are also compared and evaluated and a simple screening model to calculate the NH3 concentration and dry deposition rate at a sensitive ecosystem located close to an NH3 source was developed. The model intercomparison evaluated four atmospheric dispersion models (ADMS 4.1; AERMOD v07026; OPS-st v3.0.3 and LADD v2010) for a range of hypothetical case studies representing the atmospheric dispersion from several agricultural NH3 source types. The best agreement between the mean annual concentration predictions of the models was found for simple scenarios with area and volume sources. The agreement between the predictions of the models was worst for the scenario representing the dispersion from a mechanically ventilated livestock house, for which ADMS predicted significantly smaller concentrations than the other models. The reason for these differences appears to be due to the interaction of different plume-rise and boundary layer parameterisations. All four dispersion models were applied to two real case studies of dispersion of NH3 from pig farms in Falster (Denmark) and North Carolina (USA). The mean annual concentration predictions of the models were similar for the USA case study (emissions from naturally ventilated pig houses and a slurry lagoon). The comparison of model predictions with mean annual measured concentrations and the application of established statistical model acceptability criteria concluded that all four models performed acceptably for this case study. This was not the case for the Danish case study (mechanically ventilated pig house) for which the LADD model did not perform acceptably due to the lack of plume-rise processes in the model. Regulatory dispersion models often perform poorly in low wind speed conditions due to the model dispersion theory being inapplicable at low wind speeds. For situations with frequent low wind speed periods, current modelling guidance for regulatory assessments is to use a model that can handle these conditions in an acceptable way. This may not always be possible due to insufficient meteorological data and so the only option may be to carry out the assessment using a more common regulatory model, such as the advanced Gaussian models ADMS or AERMOD. In order to assess the suitability of these models for low wind conditions, they were applied to a Mediterranean case study that included many periods of low wind speed. The case study was the dispersion of NH3 emitted by a pig farm in Segovia, Central Spain, for which mean monthly atmospheric NH3 concentration measurements were made at 21 locations surrounding the farm as well as high-temporal-resolution concentration measurements at one location during a one-week campaign. Two strategies to improve the model performance for low wind speed conditions were tested. These were ‘no zero wind’ (NZW), which replaced calm periods with the minimum threshold wind speed of the model and ‘accumulated calm emissions’ (ACE), which forced the model to emit the total emissions during a calm period during the first subsequent non-calm hour. Due to large uncertainties in the model input data (NH3 emission rates, source exit velocities, boundary layer parameters), the case study was also used to assess model prediction uncertainty and assess how this uncertainty can be taken into account in model evaluations. A dynamic emission model modified for the Mediterranean climate was used to estimate the temporal variability in NH3 emission rates and a comparison was made between the simulations using the dynamic emissions and a constant emission rate. Prediction uncertainty due to model input uncertainty was 67-98% of the mean value for ADMS and between 53-83% of the mean value for AERMOD. Most of this uncertainty was due to source emission rate uncertainty (~50%), followed by uncertainty in the meteorological conditions (~10-20%) and uncertainty in exit velocities (~5-10%). AERMOD predicted higher concentrations than ADMS and more of the simulations met the model acceptability criteria when compared with the annual mean measured concentrations. However, the ADMS predictions were better correlated spatially with the measurements. The use of dynamic emission estimates improved the performance of ADMS but worsened the performance of AERMOD and the application of strategies to improved model performance had similar contradictory effects. In order to compare different inverse modelling techniques, several models (ADMS, LADD and WindTrax) were applied to a non-agricultural case study of a penguin colony in Antarctica. This case study was used since it gave the opportunity to provide the first experimentally-derived emission factor for an Antarctic penguin colony and also had the advantage of negligible background concentrations. There was sufficient agreement between the emission estimates obtained from the three models to define an emission factor for the penguin colony (1.23 g NH3 per breeding pair per day with an uncertainty range of 0.8-2.54 g NH3 per breeding pair per day). This emission estimate compared favourably to the value obtained using a simple micrometeorological technique (aerodynamic gradient) of 0.98 g ammonia per breeding pair per day (95% confidence interval: 0.2-2.4 g ammonia per breeding pair per day). Further application of the inverse modelling techniques for a range of agricultural case studies also demonstrated good agreement between the emission estimates. It is concluded, therefore, that inverse dispersion modelling is a robust technique for estimating NH3 emission rates. Screening models that can provide a quick and approximate estimate of environmental impacts are a useful tool for impact assessments because they can be used to filter out cases that potentially have a minimal environmental impact allowing resources to be focussed on more potentially damaging cases. The Simple Calculation of Ammonia Impact Limits (SCAIL) model was developed as a screening model to provide an estimate of the mean NH3 concentration and dry deposition rate downwind of an agricultural source. This screening tool, based on the LADD model, was evaluated and calibrated with several experimental datasets and then validated using independent concentration measurements made near sources. Overall SCAIL performed acceptably according to established statistical criteria. This work has identified situations where the concentration predictions of dispersion models are similar and other situations where the predictions are significantly different. Some models are simply not designed to simulate certain scenarios since they do not include the relevant processes or are beyond the limits of their applicability. An example is the LADD model that is not applicable to sources with significant exit velocity since the model does not include a plume-rise parameterisation. The testing of a simple scheme combining a momentum-driven plume rise and increased turbulence at the source improved model performance, but more testing is required. Even models that are applicable and include the relevant process do not always give similar predictions and the reasons for this need to be investigated. AERMOD for example predicts higher concentrations than ADMS for dispersion from mechanically ventilated livestock housing. There is evidence to suggest that ADMS underestimates concentrations in these situations due to a high wind speed threshold. Conversely, there is also evidence that AERMOD overestimates concentrations in these situations due to overestimation at low wind speeds. However, a simple modification to the meteorological pre-processor appears to improve the performance of the model. It is important that these differences between the predictions of these models are taken into account in regulatory assessments. This can be done by applying the most suitable model for the assessment in question or, better still, using multiple or hybrid models.
Resumo:
In the face of likely climate change impacts policy makers at different spatial scales need access to assessment tools that enable informed policy instruments to be designed. Recent scientific advances have facilitated the development of improved climate projections, but it remains to be seen whether these are translated into effective adaptation strategies. This paper uses existing databases on climate impacts on European agriculture and combines them with an assessment of adaptive capacity to develop an interdisciplinary approach for prioritising policies. It proposes a method for identifying relevant policies for different EU countries that are representative of various agroclimatic zones. Our analysis presents a framework for integrating current knowledge of future climate impacts with an understanding of the underlying socio-economic, agricultural and environmental traits that determine a region’s capacity for adapting to climate change.
Resumo:
One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing
Resumo:
Traction prediction modelling, a key factor in farm tractor design, has been driven by the need to find the answer to this question without having to build physical prototypes. A wide range of theories and their respective algorithms can be used in such predictions. The “Tractors and Tillage” research team at the Polytechnic University of Madrid, which engages, among others, in traction prediction for farm tractors, has developed a series of programs based on the cone index as the parameter representative of the terrain. With the software introduced in the present paper, written in Visual Basic, slip can be predicted in two- and four-wheel drive tractors using any one of four models. It includes databases for tractors, front tyres, rear tyres and working conditions (soil cone index and drawbar pull exerted). The results can be exported in spreadsheet format.
Resumo:
En la actualidad, el seguimiento de la dinámica de los procesos medio ambientales está considerado como un punto de gran interés en el campo medioambiental. La cobertura espacio temporal de los datos de teledetección proporciona información continua con una alta frecuencia temporal, permitiendo el análisis de la evolución de los ecosistemas desde diferentes escalas espacio-temporales. Aunque el valor de la teledetección ha sido ampliamente probado, en la actualidad solo existe un número reducido de metodologías que permiten su análisis de una forma cuantitativa. En la presente tesis se propone un esquema de trabajo para explotar las series temporales de datos de teledetección, basado en la combinación del análisis estadístico de series de tiempo y la fenometría. El objetivo principal es demostrar el uso de las series temporales de datos de teledetección para analizar la dinámica de variables medio ambientales de una forma cuantitativa. Los objetivos específicos son: (1) evaluar dichas variables medio ambientales y (2) desarrollar modelos empíricos para predecir su comportamiento futuro. Estos objetivos se materializan en cuatro aplicaciones cuyos objetivos específicos son: (1) evaluar y cartografiar estados fenológicos del cultivo del algodón mediante análisis espectral y fenometría, (2) evaluar y modelizar la estacionalidad de incendios forestales en dos regiones bioclimáticas mediante modelos dinámicos, (3) predecir el riesgo de incendios forestales a nivel pixel utilizando modelos dinámicos y (4) evaluar el funcionamiento de la vegetación en base a la autocorrelación temporal y la fenometría. Los resultados de esta tesis muestran la utilidad del ajuste de funciones para modelizar los índices espectrales AS1 y AS2. Los parámetros fenológicos derivados del ajuste de funciones permiten la identificación de distintos estados fenológicos del cultivo del algodón. El análisis espectral ha demostrado, de una forma cuantitativa, la presencia de un ciclo en el índice AS2 y de dos ciclos en el AS1 así como el comportamiento unimodal y bimodal de la estacionalidad de incendios en las regiones mediterránea y templada respectivamente. Modelos autorregresivos han sido utilizados para caracterizar la dinámica de la estacionalidad de incendios y para predecir de una forma muy precisa el riesgo de incendios forestales a nivel pixel. Ha sido demostrada la utilidad de la autocorrelación temporal para definir y caracterizar el funcionamiento de la vegetación a nivel pixel. Finalmente el concepto “Optical Functional Type” ha sido definido, donde se propone que los pixeles deberían ser considerados como unidades temporales y analizados en función de su dinámica temporal. ix SUMMARY A good understanding of land surface processes is considered as a key subject in environmental sciences. The spatial-temporal coverage of remote sensing data provides continuous observations with a high temporal frequency allowing the assessment of ecosystem evolution at different temporal and spatial scales. Although the value of remote sensing time series has been firmly proved, only few time series methods have been developed for analyzing this data in a quantitative and continuous manner. In the present dissertation a working framework to exploit Remote Sensing time series is proposed based on the combination of Time Series Analysis and phenometric approach. The main goal is to demonstrate the use of remote sensing time series to analyze quantitatively environmental variable dynamics. The specific objectives are (1) to assess environmental variables based on remote sensing time series and (2) to develop empirical models to forecast environmental variables. These objectives have been achieved in four applications which specific objectives are (1) assessing and mapping cotton crop phenological stages using spectral and phenometric analyses, (2) assessing and modeling fire seasonality in two different ecoregions by dynamic models, (3) forecasting forest fire risk on a pixel basis by dynamic models, and (4) assessing vegetation functioning based on temporal autocorrelation and phenometric analysis. The results of this dissertation show the usefulness of function fitting procedures to model AS1 and AS2. Phenometrics derived from function fitting procedure makes it possible to identify cotton crop phenological stages. Spectral analysis has demonstrated quantitatively the presence of one cycle in AS2 and two in AS1 and the unimodal and bimodal behaviour of fire seasonality in the Mediterranean and temperate ecoregions respectively. Autoregressive models has been used to characterize the dynamics of fire seasonality in two ecoregions and to forecasts accurately fire risk on a pixel basis. The usefulness of temporal autocorrelation to define and characterized land surface functioning has been demonstrated. And finally the “Optical Functional Types” concept has been proposed, in this approach pixels could be as temporal unities based on its temporal dynamics or functioning.
Resumo:
Irrigation management in large crop fields is a very important practice. Since the farm management costs and the crop results are directly connected with the environmental moisture, water control optimization is a critical factor for agricultural practices, as well as for the planet sustainability. Usually, the crop humidity is measured through the water stress index (WSI), using imagery acquired from satellites or airplanes. Nevertheless, these tools have a significant cost, lack from availability, and dependability from the weather. Other alternative is to recover to ground tools, such as ground vehicles and even static base stations. However, they have an outstanding impact in the farming process, since they can damage the cultivation and require more human effort. As a possible solution to these issues, a rolling ground robot have been designed and developed, enabling non-invasive measurements within crop fields. This paper addresses the spherical robot system applied to intra-crop moisture measurements. Furthermore, some experiments were carried out in an early stage corn field in order to build a geo-referenced WSI map.
Resumo:
In general, insurance is a form of risk management used to hedge against a contingent loss. The conventional definition is the equitable transfer of a risk of loss from one entity to another in exchange for a premium or a guaranteed and quantifiable small loss to prevent a large and possibly devastating loss being agricultural insurance a special line of property insurance. Agriculture insurance, as actually are designed in the Spanish scenario, were established in 1978. At the macroeconomic insurance studies scale, it is necessary to know a basic element for the insurance actuarial components: sum insured. When a new risk assessment has to be evaluated in the insurance framework, it is essential to determinate venture capital in the total Spanish agriculture. In this study, three different crops (cereal, citrus and vineyards) cases are showed to determinate sum insured as they are representative of the cases found in the Spanish agriculture. Crop sum insured is calculated by the product of crop surface, unit surface production and crop price insured. In the cereal case, winter as spring cereal sowing, represents the highest Spanish crop surface, above to 6 millions of hectares (ha). Meanwhile, the four citrus species (oranges, mandarins, lemons and grapefruits) occupied an extension just over 275.000 ha. On the other hand, vineyard target to wine process shows almost one million of ha in Spain.
Resumo:
The effects of climate change will be felt by most farmers in Europe over the next decades. This study provides consistent results of the impact of climate change on arable agriculture in Europe by using high resolution climate data, socio-economic data, and impact assessment models, including farmer adaptation. All scenarios are consistent with the spatial distribution of effects, exacerbating regional disparities and current vulnerability to climate. Since the results assume no restrictions on the use of water for irrigation or on the application of agrochemicals, they may be considered optimistic from the production point of view and somewhat pessimistic from the environmental point of view. The results provide an estimate of the regional economic impact of climate change, as well as insights into the importance of mitigation and adaptation policies.