987 resultados para adenomatous polyposis coli
Resumo:
This case describes evidence for a Shiga toxin-producing Escherichia coli (STEC) O146:H28 infection leading to hemolytic uremic syndrome in a neonate. STEC O146:H28 was linked hitherto with asymptomatic carriage in humans. Based on strain characteristics and genotyping data, the mother is a healthy carrier who transmitted the STEC during delivery. STEC strains belonging to the low-pathogenic STEC group must also be considered in the workup of neonatal hemolytic uremic syndrome.
Resumo:
Infections with enterotoxigenic Escherichia coli (ETEC) are a major cause of travelers' diarrhea worldwide. Colonization of the small intestine mucosa is dependent on specific colonization factor antigens (CFA) and coli surface (CS) antigens. CFA/1, CS3, and CS6 are the most prevalent fimbrial antigens found in clinical isolates. The goal of our study was to visualize the morphology of CS3 and CS6 fimbriae in wild-type and recombinant E. coli strains by means of transmission electron microscopy in conjunction with negative staining and immunolabeling. Corresponding ETEC genes were cloned into E. coli K12 strain DH10B. Expression of fimbriae was dependent on culture conditions and sample handling. Specific immunolabeling of fimbriae unequivocally demonstrated the presence of all types of surface antigens investigated. Negative staining was effective in revealing CS3 but not CS6. In addition, this technique clearly demonstrated differences in the morphology of genetically and immunologically identical CS3 surface antigens in wild-type and recombinant strains. This paper provides a basis for the assessment of recombinant vaccines.
Resumo:
The epidemiology of an enrofloxacin-resistant Escherichia coli clone was investigated during two separate outbreaks of colibacillosis in the Danish broiler production. In total five flocks were reported affected by the outbreaks. Recorded first-week mortalities were in the range of 1.7-12.7%. The clone was first isolated from dead broilers and subsequently demonstrated in samples from associated hatchers and the parent flock with its embryonated eggs, suggesting a vertical transmission from the parents. The second outbreak involved two broiler flocks unrelated to the affected flocks from the first outbreak. However, the clone could not be demonstrated in the associated parent flock. Furthermore, samplings from grand-parent flocks were negative for the outbreak clone. The clonality was evaluated by plasmid profiling and pulsed-field gel electrophoresis. None of the recognized virulence factors were demonstrated in the outbreak clone by microarray and PCR assay. The molecular background for the fluoroquinolone-resistance was investigated and point mutations in gyrA and parC leading to amino-acid substitutions in quinolone-resistance determining regions of GyrA and ParC were demonstrated. Vertical transmission of enrofloxacin-resistant E. coli from healthy parents resulting in high first-week mortality in the offspring illustrates the potential of the emergence and spreading of fluoroquinolone-resistant bacteria in animal husbandry, even though the use of fluoroquinolones is restricted.
Resumo:
A spontaneous mutant (M113) of Escherichia coli AG100 with an unstable multiple antibiotic resistance (Mar) phenotype was isolated in the presence of tetracycline. Two mutations were found: an insertion in the promoter of lon (lon3::IS186) that occurred first and a subsequent large tandem duplication, dupIS186, bearing the genes acrAB and extending from the lon3::IS186 to another IS186 present 149 kb away from lon. The decreased amount of Lon protease increased the amount of MarA by stabilization of the basal quantities of MarA produced, which in turn increased the amount of multidrug effux pump AcrAB-TolC. However, in a mutant carrying only a lon mutation, the overproduced pump mediated little, if any, increased multidrug resistance, indicating that the Lon protease was required for the function of the pump. This requirement was only partial since resistance was mediated when amounts of AcrAB in a lon mutant were further increased by a second mutation. In M113, amplification of acrAB on the duplication led to increased amounts of AcrAB and multidrug resistance. Spontaneous gene duplication represents a new mechanism for mediating multidrug resistance in E. coli through AcrAB-TolC.
Resumo:
The genetic diversity of 115 Campylobacter coli strains, isolated from pigs of 59 geographical distant farms in Switzerland, were characterized on the basis of their DNA fingerprints and resistance to macrolides and fluoroquinolones. Sequence analysis showed that the macrolide-resistant isolates had a point mutation in the 23S ribosomal RNA (rRNA) genes (A2075G) and that the fluoroquinolone-resistant isolates had a point mutation in the gyrase gene gyrA (C257T). One fluoroquinolone-resistant strain had an additional transition mutation in the gyrB gene (A1471C). The flaA restriction fragment length polymorphism (RFLP) genotyping revealed that 57% of the isolates were genetically different. Point mutations in the 23S rRNA and gyrA genes could be found in both genetically distant and genetically related isolates. Additionally, isolates with and without point mutations were found within individual farms and on different farms. This study showed that the ciprofloxacin and erythromycin-resistant C. coli population present on the pig farms is not issued from a common ancestral clone, but individual Campylobacter strains have most likely mutated independently to acquire resistances under the selective pressure of an antibiotic.
Resumo:
As a first step towards a vaccine against diarrhoeal disease caused by enterotoxigenic Escherichia coli (ETEC), we have studied the expression of several ETEC antigens in the live attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Colonization factors (CF) CFA/I, CS3, and CS6 were expressed at the surface of V. cholerae CVD 103-HgR. Both CFA/I and CS3 required the co-expression of a positive regulator for expression, while CS6 was expressed without regulation. Up-regulation of CF expression in V. cholerae was very efficient, so that high amounts of CFA/I and CS3 similar to those in wild-type ETEC were synthesized from chromosomally integrated CF and positive regulator loci. Increasing either the operon and/or the positive regulator gene dosage resulted in only a small increase in CFA/I and CS3 expression. In contrast, the level of expression of the non-regulated CS6 fimbriae appeared to be more dependent on gene dosage. While CF expression in wild-type ETEC is known to be tightly thermoregulated and medium dependent, it seems to be less stringent in V. cholerae. Finally, co-expression of two or three CFs in the same strain was efficient even under the control of one single regulator gene.
Resumo:
Classical antibody-based serotyping of Escherichia coli is an important method in diagnostic microbiology for epidemiological purposes, as well as for a rough virulence assessment. However, serotyping is so tedious that its use is restricted to a few reference laboratories. To improve this situation we developed and validated a genetic approach for serotyping based on the microarray technology. The genes encoding the O-antigen flippase (wzx) and the O-antigen polymerase (wzy) were selected as target sequences for the O antigen, whereas fliC and related genes, which code for the flagellar monomer, were chosen as representatives for the H phenotype. Starting with a detailed bioinformatic analysis and oligonucleotide design, an ArrayTube-based assay was established: a fast and robust DNA extraction method was coupled with a site-specific, linear multiplex labeling procedure and hybridization analysis of the biotinylated amplicons. The microarray contained oligonucleotide DNA probes, each in duplicate, representing 24 of the epidemiologically most relevant of the over 180 known O antigens (O antigens 4, 6 to 9, 15, 26, 52, 53, 55, 79, 86, 91, 101, 103, 104, 111, 113, 114, 121, 128, 145, 157, and 172) as well as 47 of the 53 different H antigens (H antigens 1 to 12, 14 to 16, 18 to 21, 23 to 34, 37 to 43, 45, 46, 48, 49, 51 to 54, and 56). Evaluation of the microarray with a set of defined strains representing all O and H serotypes covered revealed that it has a high sensitivity and a high specificity. All of the conventionally typed 24 O groups and all of the 47 H serotypes were correctly identified. Moreover, strains which were nonmotile or nontypeable by previous serotyping assays yielded unequivocal results with the novel ArrayTube assay, which proved to be a valuable alternative to classical serotyping, allowing processing of single colonies within a single working day.
Resumo:
The detection of virulence determinants harbored by pathogenic Escherichia coli is important for establishing the pathotype responsible for infection. A sensitive and specific miniaturized virulence microarray containing 60 oligonucleotide probes was developed. It detected six E. coli pathotypes and will be suitable in the future for high-throughput use.
Resumo:
Thirteen spontaneous multiple-antibiotic-resistant (Mar) mutants of Escherichia coli AG100 were isolated on Luria-Bertani (LB) agar in the presence of tetracycline (4 microg/ml). The phenotype was linked to insertion sequence (IS) insertions in marR or acrR or unstable large tandem genomic amplifications which included acrAB and which were bordered by IS3 or IS5 sequences. Five different lon mutations, not related to the Mar phenotype, were also found in 12 of the 13 mutants. Under specific selective conditions, most drug-resistant mutants appearing late on the selective plates evolved from a subpopulation of AG100 with lon mutations. That the lon locus was involved in the evolution to low levels of multidrug resistance was supported by the following findings: (i) AG100 grown in LB broth had an important spontaneous subpopulation (about 3.7x10(-4)) of lon::IS186 mutants, (ii) new lon mutants appeared during the selection on antibiotic-containing agar plates, (iii) lon mutants could slowly grow in the presence of low amounts (about 2x MIC of the wild type) of chloramphenicol or tetracycline, and (iv) a lon mutation conferred a mutator phenotype which increased IS transposition and genome rearrangements. The association between lon mutations and mutations causing the Mar phenotype was dependent on the medium (LB versus MacConkey medium) and the antibiotic used for the selection. A previously reported unstable amplifiable high-level resistance observed after the prolonged growth of Mar mutants in a low concentration of tetracycline or chloramphenicol can be explained by genomic amplification.
Resumo:
A 10-year-old, female West Highland white terrier was presented with poorly controlled diabetes mellitus and a previously undetected heart murmur. Emphysematous cystitis, emphysematous peritonitis and infective endocarditis of the tricuspid valve with gas accumulation were diagnosed with radiographs, including non-selective angiocardiography. The diagnoses were confirmed by post-mortem examination and positive cultures for Escherichia coli in blood, urine and tricuspid valve tissue samples.
Resumo:
The effect of no fluids versus liberal fluid supplementation on brain edema and cerebrospinal fluid (CSF) lactate and glucose concentrations was compared in rabbits with experimental Escherichia coli meningitis. Fluid restriction for the duration of the experiment (19 h) led to a decrease in body weight by approximately 5%, while the high fluid regimen increased body weight by approximately 5%. Infected animals developed brain edema compared with controls, but the fluid regimen had no measurable effect on the degree of edema. In contrast, fluid-restricted animals had significantly higher CSF lactate and lower CSF glucose concentrations than fluid-supplemented animals (lactate, 13.5 +/- 3.5 vs. 10.1 +/- 3.3 mmol/L; glucose, 1.89 +/- 1.39 vs. 4.11 +/- 1.39 mmol/L). These results fail to support the hypothesis that administration of large amounts of fluid in this model of gram-negative bacterial meningitis aggravates brain edema.
Resumo:
We evaluated the pharmacokinetics and therapeutic efficacy of ampicillin combined with sulbactam in a rabbit model of meningitis due to a beta-lactamase-producing strain of Escherichia coli K-1. Ceftriaxone was used as a comparison drug. The MIC and MBC were 32 and greater than 64 micrograms/ml (ampicillin), greater than 256 and greater than 256 micrograms/ml (sulbactam), 2.0 and 4.0 micrograms/ml (ampicillin-sulbactam [2:1 ratio, ampicillin concentration]) and 0.125 and 0.25 micrograms/ml (ceftriaxone). All antibiotics were given by intravenous bolus injection in a number of dosing regimens. Ampicillin and sulbactam achieved high concentrations in cerebrospinal fluid (CSF) with higher dose regimens, but only moderate bactericidal activity compared with that of ceftriaxone was obtained. CSF bacterial titers were reduced by 0.6 +/- 0.3 log10 CFU/ml/h with the highest ampicillin-sulbactam dose used (500 and 500 mg/kg of body weight, two doses). This was similar to the bactericidal activity achieved by low-dose ceftriaxone (10 mg/kg), while a higher ceftriaxone dose (100 mg/kg) produced a significant increase in bactericidal activity (1.1 +/- 0.4 log10 CFU/ml/h). It appears that ampicillin-sulbactam, despite favorable CSF pharmacokinetics in animals with meningitis, may be of limited value in the treatment of difficult-to-treat beta-lactamase-producing bacteria, against which the combination shows only moderate in vitro activity.
Resumo:
We evaluated the pharmacokinetics and therapeutic efficacy of piperacillin combined with tazobactam, a novel beta-lactamase inhibitor, in experimental meningitis due to a beta-lactamase-producing strain of K1-positive Escherichia coli. Different doses of piperacillin and tazobactam, as single agents and combined (8:1 ratio; dosage range, 40/5 to 200/25 mg/kg per h), and of ceftriaxone were given to experimentally infected rabbits by intravenous bolus injection followed by a 5-h constant infusion. The mean (+/- standard deviation) rates for penetration into the cerebrospinal fluid of infected animals after coadministration of both drugs were 16.6 +/- 8.4% for piperacillin and 32.5 +/- 12.6% for tazobactam. Compared with either agent alone, combination treatment resulted in significantly better bactericidal activity in the cerebrospinal fluid. The bactericidal activity of piperacillin-tazobactam was dose dependent: cerebrospinal fluid bacterial titers were reduced by 0.37 +/- 0.19 log10 CFU/ml per h with the lowest dose versus 0.96 +/- 0.25 log10 CFU/ml per h with the highest dose (P less than 0.001). At the relatively high doses of 160/20 and 200/25 mg of piperacillin-tazobactam per kg per h, the bactericidal activity of the combination was comparable to that of 10 and 25 mg of ceftriaxone per kg per h, respectively.