985 resultados para adaptive cost


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a high current impedance matching method for narrowband power-line communication (NPLC) systems. The impedance of the power-line channel is time and location variant; therefore, coupling circuitry and the channel are not usually matched. This not only results in poor signal integrity at the receiving end, but also leads to a higher transmission power requirement to secure the communication process. To offset this negative effect, a high-current adaptive impedance circuit to enable impedance matching in power-line networks is reported. The approach taken is to match the channel impedance of N-PLC systems is based on the General Impedance Converter (GIC). In order to achieve high current a special coupler in which the inductive impedance can be altered by adjusting a microcontroller controlled digital resistor is demonstrated. It is shown that the coupler works well with heavy load current in power line networks. It works in both low and high transmitting current modes, a current as high as 760 mA has been obtained. Besides, compared with other adaptive impedance couplers, the advantages include higher matching resolution and a simple control interface. Experimental results are presented to demonstrate the operation of the coupler. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for next-generation datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © 2011 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical waveguide sensor formed directly on low-cost PCB substrates is presented for the first time. The device integrates polymer waveguides functionalized with chemical dyes, photonic and electronic components and allows multiple-gas detection. © 2011 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we demonstrate a novel technique to grow carbon nanotubes (CNTs) on addressable localized areas, at wafer level, on a fully processed CMOS substrate. The CNTs were grown using tungsten micro-heaters (local growth technique) at elevated temperature on wafer scale by connecting adjacent micro-heaters through metal tracks in the scribe lane. The electrical and optical characterization show that the CNTs are identical and reproducible. We believe this wafer level integration of CNTs with CMOS circuitry enables the low-cost mass production of CNT sensors, such as chemical sensors.