945 resultados para accuracy assessment
Resumo:
Objectives To determine: (1) the accuracy of cytology scientists at assessing specimen adequacy by rapid on-site evaluation (ROSE) at fine needle aspiration (FNA) cytology collections; and (2) whether thyroid FNA with ROSE has lower inadequacy rates than non-attended FNAs. Methods The ROSE of adequacy for 3032 specimens from 17 anatomical sites collected over a 20-month period was compared with the final report assessment of adequacy. ROSE was performed by 19 cytology scientists. The report profile for 1545 thyroid nodules with ROSE was compared with that for 1536 consecutive non-ROSE thyroid FNAs reported by the same cytopathologists during the study period. Results ROSE was adequate in 75% (2276/3032), inadequate in 12% (366/3032) and in 13% (390/3032) no opinion was rendered. Of the 2276 cases assessed as adequate by ROSE, 2268 (99.6%) were finally reported as adequate for assessment; eight specimens had adequacy downgraded on the final report. Fifty eight per cent of cases with a ROSE assessment of inadequate were reported as adequate (212/366), whereas 93% (363/390) with no opinion rendered were reported as adequate. The overall final report adequacy rate for the 3032 specimens was 94% (2843/3032). Confirmation of a ROSE of adequacy at reporting was uniformly high amongst the 19 scientists, ranging from 98% to 100%. The inadequacy rate for thyroid FNAs with ROSE (6%) was significantly (P < 0.0001) lower than for non-ROSE thyroid FNAs (17%). A significantly (P = 0.02) higher proportion of adequate ROSE thyroid specimens was reported with abnormalities, compared with non-ROSE thyroid collections. Conclusions Cytology scientists are highly accurate at determining specimen adequacy at ROSE for a wide range of body sites. ROSE of thyroid FNAs can significantly reduce inadequate reports.
Resumo:
A quasi-Poisson generalized linear model combined with a distributed lag non-linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood diarrhea in Brisbane from 2001 to 2010. Residual of the model was checked to examine whether there was an added effect due to heat waves. The change over time in temperature-diarrhea relation was also assessed. Both low and high temperatures had significant impact on childhood diarrhea. Heat waves had an added effect on childhood diarrhea, and this effect increased with intensity and duration of heat waves. There was a decreasing trend in the main effect of heat on childhood diarrhea in Brisbane across the study period. Brisbane children appeared to have gradually adapted to mild heat, but they are still very sensitive to persistent extreme heat. Development of future heat alert systems should take the change in temperature-diarrhea relation over time into account.
Resumo:
Slippage in the contact roller-races has always played a central role in the field of diagnostics of rolling element bearings. Due to this phenomenon, vibrations triggered by a localized damage are not strictly periodic and therefore not detectable by means of common spectral functions as power spectral density or discrete Fourier transform. Due to the strong second order cyclostationary component, characterizing these signals, techniques such as cyclic coherence, its integrated form and square envelope spectrum have proven to be effective in a wide range of applications. An expert user can easily identify a damage and its location within the bearing components by looking for particular patterns of peaks in the output of the selected cyclostationary tool. These peaks will be found in the neighborhood of specific frequencies, that can be calculated in advance as functions of the geometrical features of the bearing itself. Unfortunately the non-periodicity of the vibration signal is not the only consequence of the slippage: often it also involves a displacement of the damage characteristic peaks from the theoretically expected frequencies. This issue becomes particularly important in the attempt to develop highly automated algorithms for bearing damage recognition, and, in order to correctly set thresholds and tolerances, a quantitative description of the magnitude of the above mentioned deviations is needed. This paper is aimed at identifying the dependency of the deviations on the different operating conditions. This has been possible thanks to an extended experimental activity performed on a full scale bearing test rig, able to reproduce realistically the operating and environmental conditions typical of an industrial high power electric motor and gearbox. The importance of load will be investigated in detail for different bearing damages. Finally some guidelines on how to cope with such deviations will be given, accordingly to the expertise obtained in the experimental activity.
Resumo:
Prosperity and environmental sustainability of cities are inextricably linked. Cities can only maintain their prosperity when environmental and social objectives are fully integrated with economic goals for the purpose of a sustainable urban development. Sustainability assessment helps policy-makers decide what actions they should and should not take in an attempt to make our cities more sustainable. There are numerous models available for measuring and evaluating urban sustainability, and they focus their analysis on a specific scale—i.e., micro, mezzo, or macro. In most cases these results are inadequate for the other scales, though generating reliable results for that particular scale. The paper introduces a multiscalar urban sustainability approach by linking two sustainability assessment models evaluate sustainability performances in micro- and mezzo-levels and generate multiscalar results for the macro-level. The paper puts this approach into test in Gold Coast, Australia, and sheds light on the development of a more accurate sustainability analysis that may be interconnected with UN-Habitat’s City Prosperity Index.
Resumo:
A mine site water balance is important for communicating information to interested stakeholders, for reporting on water performance, and for anticipating and mitigating water-related risks through water use/demand forecasting. Gaining accuracy over the water balance is therefore crucial for sites to achieve best practice water management and to maintain their social license to operate. For sites that are located in high rainfall environments the water received to storage dams through runoff can represent a large proportion of the overall inputs to site; inaccuracies in these flows can therefore lead to inaccuracies in the overall site water balance. Hydrological models that estimate runoff flows are often incorporated into simulation models used for water use/demand forecasting. The Australian Water Balance Model (AWBM) is one example that has been widely applied in the Australian context. However, the calibration of AWBM in a mining context can be challenging. Through a detailed case study, we outline an approach that was used to calibrate and validate AWBM at a mine site. Commencing with a dataset of monitored dam levels, a mass balance approach was used to generate an observed runoff sequence. By incorporating a portion of this observed dataset into the calibration routine, we achieved a closer fit between the observed vs. simulated dataset compared with the base case. We conclude by highlighting opportunities for future research to improve the calibration fit through improving the quality of the input dataset. This will ultimately lead to better models for runoff prediction and thereby improve the accuracy of mine site water balances.
Resumo:
The human right to water has recently been recognised by both the United Nations General Assembly and the Human Rights Council. As the mining industry interacts with water on multiple levels, it is important that these interactions respect the human right to water. Currently, a disconnect exists between mine site water management practices and the recognition of water from a human rights perspective. The Minerals Council of Australia (MCA) Water Accounting Framework (WAF) has previously been used to strengthen the connection between water management and human rights. This article extends this connection through the use of a Social Water Assessment Protocol (SWAP). The SWAP is scoping tool consisting of a set of questions classified into taxonomic themes under leading topics with suggested sources of data that enable mine sites to better understand the local water context in which they operate. Three of the themes contained in the SWAP – gender, Indigenous peoples and health – are discussed to demonstrate how the protocol may be useful in assisting mining companies to consider their impacts on the human right to water.
Resumo:
Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19–70 years, n 152, 48 % men) with a wide range of BMI (14–40 kg/m2). Isotopic enrichment was assessed by isotope ratio mass spectroscopy. The agreement between the estimates of body composition measured by the two techniques was assessed by the Bland–Altman method. The mean age and BMI were 37 (SD 15) years and 23·3 (SD 5·1) kg/m2, respectively, for men and 37 (SD 14) years and 24·1 (SD 5·8) kg/m2, respectively, for women. The estimates of fat-free mass were higher by about 7 (95 % CI 6, 9) %, those of fat mass were lower by about 21 (95 % CI 218,223) %, and those of body fat percentage (BF%) were lower by about 7·4 (95 % CI 28·2, 26·6) % as obtained by DXA compared with the isotope dilution technique. The Bland–Altman analysis showed wide limits of agreement that indicated poor agreement between the methods. The bias in the estimates of BF% was higher at the lower values of BF%. Thus, the two commonly used reference methods showed substantial differences in the estimates of body composition with wide limits of agreement. As the estimates of body composition are method-dependent, the two methods cannot be used interchangeably
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. Methods: Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. Results: The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/ 226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). Conclusions: The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.
Resumo:
An award of damages for defamation is to provide reparation for harm to a plaintiff’s reputation for the publication of defamatory material, compensate for any personal distress caused and vindicate the plaintiff’s reputation.1 Assessing such damages is recognised as a difficult task and perhaps the Queensland courts face further difficulties as there are few awards of damages for defamation in the state. This was pointed out in the recent decision of the Queensland Court of Appeal, Cerutti & Anor v Crestside Pty Ltd & Anor.2 This decision examined in detail the principles of assessing damages for defamation.
Resumo:
Regional resource self-sufficiency has been proposed as a way to improve food security by lessening the demand on long-distance transport. An online tool, the Carrying Capacity Dashboard, was developed for Australian conditions in order to gauge self-sufficiency at three different scales: regional, state and national. It allows users to test a variety of societal behaviours such as diet, biofuel production, farming systems and ecological protection practices. Analysis developed from the Dashboard tests the effects of various resource consumption patterns on land carrying capacity. Findings reveal that Australia’s current carrying capacity is estimated to be over 40 million, but if calculated on a regional basis, this is reduced by almost half.
Resumo:
This paper evaluates the suitability of sequence classification techniques for analyzing deviant business process executions based on event logs. Deviant process executions are those that deviate in a negative or positive way with respect to normative or desirable outcomes, such as non-compliant executions or executions that undershoot or exceed performance targets. We evaluate a range of feature types and classification methods in terms of their ability to accurately discriminate between normal and deviant executions both when deviances are infrequent (unbalanced) and when deviances are as frequent as normal executions (balanced). We also analyze the ability of the discovered rules to explain potential causes and contributing factors of observed deviances. The evaluation results show that feature types extracted using pattern mining techniques only slightly outperform those based on individual activity frequency. The results also suggest that more complex feature types ought to be explored to achieve higher levels of accuracy.
Resumo:
Both environmental economists and policy makers have shown a great deal of interest in the effect of pollution abatement on environmental efficiency. In line with the modern resources available, however, no contribution is brought to the environmental economics field with the Markov chain Monte Carlo (MCMC) application, which enables simulation from a distribution of a Markov chain and simulating from the chain until it approaches equilibrium. The probability density functions gained prominence with the advantages over classical statistical methods in its simultaneous inference and incorporation of any prior information on all model parameters. This paper concentrated on this point with the application of MCMC to the database of China, the largest developing country with rapid economic growth and serious environmental pollution in recent years. The variables cover the economic output and pollution abatement cost from the year 1992 to 2003. We test the causal direction between pollution abatement cost and environmental efficiency with MCMC simulation. We found that the pollution abatement cost causes an increase in environmental efficiency through the algorithm application, which makes it conceivable that the environmental policy makers should make more substantial measures to reduce pollution in the near future.
Resumo:
This thesis has contributed to the advancement of knowledge in disease modelling by addressing interesting and crucial issues relevant to modelling health data over space and time. The research has led to the increased understanding of spatial scales, temporal scales, and spatial smoothing for modelling diseases, in terms of their methodology and applications. This research is of particular significance to researchers seeking to employ statistical modelling techniques over space and time in various disciplines. A broad class of statistical models are employed to assess what impact of spatial and temporal scales have on simulated and real data.
Resumo:
This paper analyzes the change in productivity as a result of Angola oil policy from 2001 to 2007. Angola oil blocks are the main source of tax receipts and, therefore, strategically important for public finances. A Malmquist index with the input technological bias is applied to measure productivity change. Oil blocks on average became both more efficient and experienced technological progress. Our results indicate that the traditional growth accounting method, which assumes Hicks neutral technological change, is not appropriate for analyzing changes in productivity for Angola oil blocks. Policy implications are derived.