991 resultados para access site


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two sites on the southern flank of the Costa Rica Rift were drilled on DSDP Legs 68 and 69, one on crust 3.9 m.y. old and the other on crust 5.9 m.y. old. The basement of the younger site is effectively cooled by the circulation of seawater. The basement of the older site has been sealed by sediment, and an interval in the uppermost 560 meters of basement recently reheated to temperatures of 60 to 120°C. Although the thickness of the sediments at the two sites is similar (150-240 m versus 270 m), the much rougher basement topography at the younger Site 505 produces occasional basement outcrops, through which 80 to 90% of the total heat loss apparently occurs by advection of warm seawater. This seawater has been heated only slightly, however; the temperature at the base of the sediments is only 9°C. Changes in its composition due to reaction with the basement basalts are negligible, as indicated by profiles of sediment pore water chemistry. Bacterial sulfate reduction in the sediments produces a decrease in SO4 (and Ca) and an increase in alkalinity (and Sr and NH3) as depth increases to an intermediate level, but at deeper levels these trends reverse, and all of these species plus Mg, K, Na, and chlorinity approach seawater values near basement. Si, however, is higher, and Li may be lower. At the older site, Site 501/504, where heat loss is entirely by conduction, the temperature at the sediment/basement contact is 59°C. Sediment pore water chemistry is heavily affected by reaction with the basaltic basement, as indicated by large decreases in d18O, Mg, alkalinity, Na, and K and an increase in Ca with increasing depth. The size of the changes in d18O, Mg, alkalinity, Ca, Sr, and SO4 varies laterally over 500 meters, indicating lateral gradients in pore water chemistry that are nearly as large as the vertical gradients. The lateral gradients are believed to result from similar lateral gradients in the composition of the basement formation water, which propagate upward through the sediments by diffusion. A model of the d18O profile suggests that the basement at Site 501/504 was sealed off from advection about 1 m.y. ago, so that reaction rates began to dominate the basement pore water chemistry. A limestone-chert diagenetic front began to move upward through the lower sediments less than 200,000 yr. ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microscopic studies reveal a predominance of terrestrial organic matter in sediments of Site 808. Terrestrial vitrinite and inertinite are more abundant (73% to 100%) than marine organic matter (alginite, 0% to 27%), which increases from open oceanic deposits of the Shikoku Basin sediments to sediments of the outer trench wedge. The abundance of terrestrial organic matter is also reflected through carbon isotope values of -23 per mil to -25.9 per mil. Mass accumulation rates of organic carbon are low in hemipelagic sediments of the Shikoku Basin (<0.2 g/cm**2/k.y.) but increase significantly in sediments of the Nankai Trench (0.2 to 1.7 g/cm**2/k.y.). Although the organic mass accumulation is high in sediments of the Nankai Trench, a comparison of sedimentation rates and total organic carbon suggests relative dilution of organic carbon through turbidite flows. Calculated marine paleoproductivity of organic carbon is low in sediments of the open ocean (Shikoku Basin) and increases closer to the shore (Nankai Trench). Thermal evolution of organic matter is obtained from vitrinite reflectance measurements. Two populations of vitrinites have been observed between 600 and 1234 mbsf. Reflectance values change with increasing depth and temperature in both groups of vitrinite (0.3% to 0.68% in group 1; 0.6% to 1% in group 2).