920 resultados para Zurich Route
Resumo:
Deoxyribonucleic acid molecules are heralding a new generation of reverse - engineered biopharmaceuticals. In terms of potential application in gene medicine, plasmid DNA (pDNA) vectors have exceptional therapeutic and immunological profiles as they are free from safety concerns associated with viral vectors, display non-toxicity and are simpler to develop. This presentation will discuss the potential applications of pDNA molecules in vaccine development and gene therapy, pilot-scale production of pDNA-based biopharmaceuticals and the controlled delivery of therapeutic sequences in biodegradable polymers to different target cells via the nasal route.
Resumo:
Executive Summary: Completion of the Veloway 1 (V1) will provide a dedicated and safe route for cyclists between the Brisbane CBD and the Gateway Motorway off-ramp at Eight Mile Plains alongside the South East Motorway. The V1 is being delivered in stages and when completed will provide a dedicated 3m wide cycleway 17km in length. Two stages (D and E) remain to be constructed to complete the V1. Major trip attractors along the V1 include the Mater, Princes Alexandra and Greenslopes Hospitals, two campuses of Griffith University, Garden City shopping centre and the Australian Tax Office. This report assesses the available evidence on the impacts on cycling behaviour of the recently completed V1 Stage C. The data sources informing this review include three intercept surveys, motion activated traffic cameras and travel time surveys on the V1 and adjoining South East Freeway Bikeway (SEFB), Strava app data, and cyclist crash data along Logan Road. The key findings from the evidence are that the completed V1 Stage C has: a Attracted cyclists from Holland Park, Holland Park West, Mt Gravatt and southern parts of Tarragindi onto the V1 Stage C. b Reduced the crash exposure of pedestrians to cyclists by attracting higher speed cyclists off the adjoining SEFB onto the cycling dedicated V1 Stage C. c Reduced the potential crash exposure of cyclists to motor vehicles by attracting cyclists off Logan Road on to the V1. d Provided travel time benefits to cyclists and reduced road crossings (eight down to two). e Predominantly attracted adults commuting alone to and from work and university. The evidence shows that the two traffic crossings across Birdwood Road (required as a temporary measure until the V1 is completed) negate much of the travel time gains of the V1 Stage C compared to the adjoining SEFB for southbound cyclists. Many cyclists accessing the V1 Stage C from the south are cycling in high-volume vehicular traffic lanes to reduce their travel time along Birdwood Road, but in the process are increasing their exposure to crashes with motor vehicles. Based on these findings this report recommends that TMR: a. Continue with plans to complete the V1 Veloway b. Undertake an engineering feasibility assessment to determine the viability of constructing a section of the V1 Stage E from the intersection Weller and Birdwood Roads over Marshall Road and along Bapaume Road on the western side of the Motorway to the intersection of Bapaume and Sterculia Roads. c. In the interim, improve signage and Birdwood Road crossing points for cyclists accessing and egressing the southern end of the V1 Stage C. d. Work with Brisbane City Council to identify the safest and most practical bicycle facilities to facilitate cycle travel between Logan Road and the V1 south of Birdwood Road. e. Improve the awareness of the V1 Stage C through signage for cyclists approaching from the north with the aim of providing a better understanding of the route of the V1 to the south. f. Refine the use of motion activated traffic cameras to improve the capture rate of useable images and obtain an ongoing collection over time of V1 usage data. g. Undertake discussions with Strava, Inc. to refine the presentation of Strava data to improve visual understanding of maps showing before and after cycle route volumes along and on roads leading to the V1.
Resumo:
Airborne bioaerosols are becoming increasingly recognized as a potential route of transmission for the spread of bacterial and viral respiratory tract infections.
Resumo:
Hydrothermal liquefaction (HTL) presents a viable route for converting a vast range of materials into liquid fuel, without the need for pre-drying. Currently, HTL studies produce bio-crude with properties that fall short of diesel or biodiesel standards. Upgrading bio-crude improves the physical and chemical properties to produce a fuel corresponding to diesel or biodiesel. Properties such as viscosity, density, heating value, oxygen, nitrogen and sulphur content, and chemical composition can be modified towards meeting fuel standards using strategies such as solvent extraction, distillation, hydrodeoxygenation and catalytic cracking. This article presents a review of the upgrading technologies available, and how they might be used to make HTL bio-crude into a transportation fuel that meets current fuel property standards.
Resumo:
The present work demonstrates a systematic approach for the synthesis of pure kesterite-phase Cu2ZnSnS4 (CZTS) nanocrystals with a uniform size distribution by a one-step, thioglycolic acid (TGA)-assisted hydrothermal route. The formation mechanism and the role of TGA in the formation of CZTS compound were thoroughly studied. It has been found that TGA interacted with Cu2+ to form Cu+ at the initial reaction stage and controlled the crystal-growth of CZTS nanocrystals during the hydrothermal reaction. The consequence of the reduction of Cu2+ to Cu+ led to the formation Cu2−xS nuclei, which acted as the crystal framework for the formation of CZTS compound. CZTS was formed by the diffusion of Zn2+ and Sn4+ cations to the lattice of Cu2−xS during the hydrothermal reaction. The as-synthesized CZTS nanocrystals exhibited strong light absorption over the range of wavelength beyond 1000 nm. The band gap of the material was determined to be 1.51 eV, which is optimal for application in photoelectric energy conversion device.