973 resultados para Zeolite. Silicalite. Permeation. Crystals. Film zeolite. Membrane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial peptides offer a new class of therapeutic agents to which bacteria may not be able todevelop genetic resistance, since their main activity is in the lipid component of the bacterial cell mem-brane. We have developed a series of synthetic cationic cyclic lipopeptides based on natural polymyxin,and in this work we explore the interaction of sp-85, an analog that contains a C12 fatty acid at theN-terminus and two residues of arginine. This analog has been selected from its broad spectrum antibac-terial activity in the micromolar range, and it has a disruptive action on the cytoplasmic membrane ofbacteria, as demonstrated by TEM. In order to obtain information on the interaction of this analog withmembrane lipids, we have obtained thermodynamic parameters from mixed monolayers prepared withPOPG and POPE/POPG (molar ratio 6:4), as models of Gram positive and Gram negative bacteria, respec-tively. LangmuirBlodgett films have been extracted on glass plates and observed by confocal microscopy,and images are consistent with a strong destabilizing effect on the membrane organization induced bysp-85. The effect of sp-85 on the membrane is confirmed with unilamelar lipid vesicles of the same com-position, where biophysical experiments based on fluorescence are indicative of membrane fusion andpermeabilization starting at very low concentrations of peptide and only if anionic lipids are present.Overall, results described here provide strong evidence that the mode of action of sp-85 is the alterationof the bacterial membrane permeability barrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports the phase behavior determi- nation of a system forming reverse liquid crystals and the formation of novel disperse systems in the two-phase region. The studied system is formed by water, cyclohexane, and Pluronic L-121, an amphiphilic block copolymer considered of special interest due to its aggregation and structural proper- ties. This system forms reverse cubic (I2) and reverse hexagonal (H2) phases at high polymer concentrations. These reverse phases are of particular interest since in the two-phase region, stable high internal phase reverse emulsions can be formed. The characterization of the I2 and H2 phases and of the derived gel emulsions was performed with small-angle X-ray scattering (SAXS) and rheometry, and the influence of temperature and water content was studied. TheH2 phase experimented a thermal transition to an I2 phase when temperature was increased, which presented an Fd3m structure. All samples showed a strong shear thinning behavior from low shear rates. The elasticmodulus (G0) in the I2 phase was around 1 order of magnitude higher than in theH2 phase. G0 was predominantly higher than the viscousmodulus (G00). In the gel emulsions,G0 was nearly frequency-independent, indicating their gel type nature. Contrarily to water-in-oil (W/O) normal emulsions, in W/I2 and W/H2 gel emulsions, G0, the complex viscosity (|η*|), and the yield stress (τ0) decreased with increasing water content, since the highly viscous microstructure of the con- tinuous phase was responsible for the high viscosity and elastic behavior of the emulsions, instead of the volumefraction of dispersed phase and droplet size. A rheological analysis, in which the cooperative flow theory, the soft glass rheology model, and the slip plane model were analyzed and compared, was performed to obtain one single model that could describe the non-Maxwellian behavior of both reverse phases and highly concentrated emulsions and to characterize their microstructure with the rheological properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zeolite catalysts have been extensively used in petroleum refining and the chemical industry although they are deactivated by coke deposition. In order to find the best condition to avoid deactivation, the coke formation on H-mordenite was studied in this work. The coke was produced during benzene transalkylation with C9+ aromatics, under several reaction conditions. It was found that hydrogenated coke was produced in all samples without affecting the selectivity of toluene and xylene formation. This is explained in terms of the mordenite structure and the presence of hydrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The layered precursor of MCM-22 was prepared with different Si/Al ratios: 15, 25, 50, 100 and ¥. Upon heat treatment these precursors form MCM-22 zeolite. Both layered precursor and MCM-22 zeolite were characterized by several techniques: Chemical Analysis by Atomic Absorption Spectroscopy (AAS), X-Ray Diffraction (XRD), Thermo-gravimetric Analysis (TGA), Pore Analysis by N2 and Ar adsorption, Scanning Electron Microscopy (SEM), Infrared Spectroscopy (IR) and Temperature Programmed Desorption of ammonium (TPD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The void structure of zeolites MCM-22, MCM-36 and ITQ-2 were discussed on the bases of catalytic reaction tests. The hydromerization of n-decane on bifunctional Pt/Zeolite Catalysts have been used as model reactions. Beta and ZSM-5 zeolites were used for comparison. It is concluded that all materials show features of 10MR zeolites and have also pores bigger than 12MR in this order MCM-22

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane active peptides can perturb the lipid bilayer in several ways, such as poration and fusion of the target cell membrane, and thereby efficiently kill bacterial cells. We probe here the mechanistic basis of membrane poration and fusion caused by membrane-active, antimicrobial peptides. We show that the cyclic antimicrobial peptide, BPC194, inhibits growth of Gram-negative bacteria and ruptures the outer and inner membrane at the onset of killing, suggesting that not just poration is taking place at the cell envelope. To simplify the system and to better understand the mechanism of action, we performed Förster resonance energy transfer and cryogenic transmission electron microscopy studies in model membranes and show that the BPC194 causes fusion of vesicles. The fusogenic action is accompanied by leakage as probed by dual-color fluorescence burst analysis at a single liposome level. Atomistic molecular dynamics simulations reveal how the peptides are able to simultaneously perturb the membrane towards porated and fused states. We show that the cyclic antimicrobial peptides trigger both fusion and pore formation and that such large membrane perturbations have a similar mechanistic basis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct decomposition of NO on copper supported on zeolite catalysts such as MCM-22 and Beta was compared with that on the thoroughly studied Cu-ZSM-5. The catalysts were prepared by ion-exchange in basic media. They were characterized by atomic absorption, surface area, nitrogen adsorption at 77K, X-ray diffraction and temperature programmed reduction. The products of the reaction were analyzed by Fourier transform infrared spectroscopy using a gas cell. Catalytic activity tests indicated that zeolite catalysts, like Beta and MCM-22, lead to NO conversion values comparable to ZSM-5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyro and hydrometallurgical processes were applied to the treatment of spent commercial zeolites (a molecular sieve and a ZSM-5 sample). Both catalysts were employed in pilot plant units. They were kept in their original shape, they were not regenerated and were not subjected neither to mechanical stress nor to overheating zones during their time on-stream. Two recycling processes were tested: (i) direct solubilization of samples in mixtures of HF + H2O2 (60 ºC, 1 h). Although silicon was solubilized, insoluble matter was found in both samples, particularly in the molecular sieve, due to its high amounts of alkaline and alkaline-earth metals; (ii) fusion with KHSO4 (5 h, 600 ºC) with KHSO4/zeolite mass ratio 6:1. After fusion the solid was solubilized in water (100 ºC), leaving silicon as SiO2 residue. In both processes, solubilized metals were isolated by conventional selective precipitation techniques. Analysis of final products by common analytical methods shows that metals present in the original catalysts were recovered with very high yields except when the molecular sieve was treated with HF + H2O2. This reactant mixture proved to be suitable for processing zeolites with a low alkaline and alkaline-earth metal content whereas fusion with KHSO4 appeared to be adequate for all types of zeolites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III), nickel(II), cadmium(II) and manganese(II) in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III) > Cd(II) > Ni(II) > Mn(II), and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC) and initial pH value (from 4 to 6) was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction and analytical evaluation of a coated graphite Al(III) ion-selective electrode, based on the ionic pair formed between the Al(F)n3-n anion and tricaprylylmethylammonium cation (Aliquat 336S) incorporated on a poly(vinylchloride) (PVC) matrix membrane are described. A thin membrane film of this ionic pair and dibutylphthalate (DBPh) in PVC was deposited directly on a cylindric graphite rod (2 cm length x 0.5 cm diameter) attached to the end of a glass tube using epoxy resin. The membrane solution was prepared by dissolving 40% (m/m) of PVC in 10 mL of tetrahydrofuran following addition of 45% (m/m) of DBPh and 15% (m/m) of the ionic pair. The effect of membrane composition, fluoride concentration, and several concomitants as potential interferences on the electrode response were investigated. The aluminium(III) ion-selective electrode showed a linear response ranging from 1.4 x 10-4 to 1.0 x 10-2 mol L-1, a detection limit of 4.0 x 10-5 mol L-1, aslope of -54.3±0.2mV dec-1 and a lifetime of more than 1 year (over 3000 determinations for each membrane). The slope indicates that the ion-selective electrode responds preferentially to the Al(F)4- species. Application of this electrode for the aluminium(III) determination in stomach anti-acid samples is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study consists in evaluating the NaX zeolite efficiency in removing Cu2+ from aqueous solutions, for future use of NaX in removing metals from wastewaters. The experiments were performed in batch systems (with shaking and continous stirring) and for different time intervals (1 to 24 h). Three particle sizes were employed: < 850 µm, 850 µm - 1 mm and 3 mm. It has been concluded that it is possible to employ the NaX zeolite for metal removal and the particle size plays an important role in the adsorption process. Specifically, NaX zeolites of smaller particle size achieved the maximum adsorption capacity of 152.36 mg of Cu2+/g of zeolite at pH = 4.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the separation of CO2 from a gas mixture containing 25% CO2, 4% O2 and 71% N2 using the pressure swing adsorption (PSA) technique. The adsorbent selected was the zeolite 13X due to its great adsorption capacity for CO2 and selectivity towards the other components of the gas mixture. The experimental technique was designed to identify the most important variables for the process and to optimize it. It is shown that the PSA technique can be used to separate CO2 from O2 and N2 to obtain an effluent containing 2% CO2 with 99% separation efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the adsorption features of zeolites (NaY, Beta, Mordenite and ZSM-5) have been combined with the magnetic properties of iron oxides in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic zeolites were characterized by XRD, magnetization measurements, chemical analyses, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for metal ion contaminants in water.