938 resultados para Yielding
Resumo:
Tungsten isotope compositions of magmatic iron meteorites yield ages of differentiation that are within ±2 Ma of the formation of CAIs, with the exception of IVB irons that plot to systematically less radiogenic compositions yielding erroneously old ages. Secondary neutron capture due to galactic cosmic ray (GCR) irradiation is known to lower the ε182W of iron meteorites, adequate correction of which requires a measure of neutron dosage which has not been available, thus far. The W, Os and Pt isotope systematics of 12 of the 13 known IVB iron meteorites were determined by MC-ICP-MS (W, Os, Pt) and TIMS (Os). On the same dissolutions that yield precise ε182W, stable Os and Pt isotopes were determined as in situ neutron dosimeters for empirical correction of the ubiquitous cosmic-ray induced burn-out of 182W in iron meteorites. The W isotope data reveal a main cluster with ε182W of ∼−3.6, but a much larger range than observed in previous studies including irons (Weaver Mountains and Warburton Range) that show essentially no cosmogenic effect on their ε182W. The IVB data exhibits resolvable negative anomalies in ε189Os (−0.6ε) and complementary ε190Os anomalies (+0.4ε) in Tlacotepec due to neutron capture on 189Os which has approximately the same neutron capture cross section as 182W, and captures neutrons to produce 190Os. The least irradiated IVB iron, Warburton Range, has ε189Os and ε190Os identical to terrestrial values. Similarly, Pt isotopes, which are presented as ε192Pt, ε194Pt and ε196Pt range from +4.4ε to +53ε, +1.54ε to −0.32ε and +0.73ε to −0.20ε, respectively, also identify Tlacotepec and Dumont as the most GCR-damaged samples. In W–Os and W–Pt isotope space, the correlated isotope data back-project toward a 0-epsilon value of ε192Pt, ε189Os and ε190Os from which a pre-GCR irradiation ε182W of −3.42±0.09 (2σ) is derived. This pre-GCR irradiation ε182W is within uncertainty of the currently accepted CAI initial ε182W. The Pt and Os isotope correlations in the IVB irons are in good agreement with a nuclear model for spherical irons undergoing GCR spallation, although this model over-predicts the change of ε182W by ∼2×, indicating a need for better W neutron capture cross section determinations. A nucleosynthetic effect in ε184W in these irons of −0.14±0.08 is confirmed, consistent with the presence of Mo and Ru isotope anomalies in IVB irons. The lack of a non-GCR Os isotope anomaly in these irons requires more complex explanations for the production of W, Ru and Mo anomalies than nebular heterogeneity in the distribution of s-process to r-process nuclides.
Resumo:
Chronic fatigue syndrome (CFS) is a recently defined condition characterized by severe disabling fatigue that persists for a minimum of six months, and a host of somatic and neurocognitive symptoms. Although conditions similar to CFS have been described in the medical literature for over 100 years, little is known about the epidemiology of CFS or of chronic fatigue generally. The San Francisco Fatigue Study was undertaken to describe the prevalence and characteristics of self-reported chronic fatigue and associated conditions in a diverse urban community. The study utilized a cross-sectional telephone survey of a random sample of households in San Francisco, followed by case/control interviews of fatigued and nonfatigued subjects. Respondents were classified as chronically fatigued (CF) if they reported severe fatigue lasting six months or longer, then further classified as having CFS-like illness if, based on self-reported information, their condition appeared to meet CFS case definition criteria. Subjects who reported idiopathic chronic fatigue that did not meet CFS criteria were classified as having ICF-like illness.^ 8004 households were screened, yielding fatigue and demographic information on 16970 residents. CF was reported by 635 persons, 3.7% of the study population. CFS-like illness was identified in 34 subjects (0.2%), and ICF-like illness in 259 subjects (1.6%). Logistic regression analysis indicated that prevalence odds ratios for CFS-like illness were significantly elevated for females compared to males (OR = 2.9), and in Blacks (OR = 2.9) and Native Americans (OR = 13.2) relative to Whites, but significantly lower in Asians (OR = 0.12). Above-average household income was protective for all categories of CF. CFS-like subjects reported more symptoms and were more severely disabled than ICF-like subjects, but the pattern of symptoms experienced by both groups was similar. In conclusion, unexplained chronic fatigue, including CFS-like illness, occurs in all sociodemographic groups, but may be most prevalent among persons with lower incomes and in some racial minorities. Future studies that include clinical evaluation of incident cases of CFS and ICF are required to further clarify the epidemiology of unexplained chronic fatigue in the population. ^
Resumo:
The objective of this study is to test the hypothesis that partial agonists produce less desensitization because they generate less of the active conformation of the $\beta\sb2$-adrenergic receptor ($\beta$AR) (R*) and in turn cause less $\beta$AR phosphorylation by beta adrenergic receptor kinase ($\beta$ARK) and less $\beta$AR internalization. In the present work, rates of desensitization, internalization, and phosphorylation caused by a series of $\beta$AR agonists were correlated with a quantitative measure, defined as coupling efficiency, of agonist-dependent $\beta$AR activation of adenylyl cyclase. These studies were preformed in HEK-293 cells overexpressing the $\beta$AR with hemagglutinin (HA) and 6-histidine (6HIS) epitopes introduced into the N- and C-termini respectively. Agonists chosen provided a 95-fold range of coupling efficiencies, and, relative to epinephrine, the best agonist, (100%) were fenoterol (42%), albuterol (4.9%), dobutamine (2.5%) and ephedrine (1.1%). At concentrations of these agonists yielding $>$90% receptor occupancy, the rate and extent of the rapid phase (0-30 min) of agonist induced desensitization of adenylyl cyclase followed the same order as coupling efficiency, that is, epinephrine $\ge$ fitnoterol $>$ albuterol $>$ dobutamine $>$ ephedrine. The rate of internalization, measured by a loss of surface receptors during desensitization, with respect to these agonists also followed the same order as the desensitization and exhibited a slight lag. Like desensitization and internalization, $\beta$AR phosphorylation exhibited a dependency on agonist strength. The two strongest agonists epinephrine and fenoterol provoked 11 to 13 fold increases in the level of $\beta$AR phosphorylation after just 1 min, whereas the weakest agonists dobutamine and ephedrine caused only 3 to 4 fold increases in phosphorylation. With longer treatment times, the level of $\beta$AR phosphorylation declined with the strong agonists, but progressively increased with the weaker partial agonists. The major conclusion drawn from this study is that the occupancy-dependent rate of receptor phosphorylation increases with agonist coupling efficiencies and that this is sufficient to explain the desensitization, internalization, and phosphorylation data obtained.^ The mechanism of activation and desensitization by the partial $\beta$AR agonist salmeterol was also examined in this study. This drug is extremely hydrophobic and its study presents possibly unique problems. To determine whether salmeterol induces desensitization of the $\beta$AR its action has been studied using our system. Employing the use of reversible antagonists it was found that salmeterol, which has an estimated coupling efficiency near that of albuterol caused $\beta$AR desensitization. This desensitization was much reduced relative to epinephrine. Consistent with its coupling efficiency, it was found to be similar to albuterol in its ability to induce internalization and phosphorylation of the $\beta$AR. (Abstract shortened by UMI.) ^
Resumo:
This study was conducted to determine the incidence and etiology of neonatal seizures, and evaluate risk factors for this condition in Harris County, Texas, between 1992 and 1994. Potential cases were ascertained from four sources: discharge diagnoses at local hospitals, birth certificates, death certificates, and a clinical study of neonatal seizures conducted concurrent with this study at a large tertiary care center in Houston, Texas. The neonatal period was defined as the first 28 days of life for term infants, and up to 44 weeks gestation for preterm infants.^ There were 207 cases of neonatal seizures ascertained among 116,048 live births, yielding and incidence of 1.8 per 1000. Half of the seizures occurred by the third day of life, 70% within the first week, and 93% within the first 28 days of life. Among 48 preterm infants with seizures 15 had their initial seizure after the 28th day of life. About 25% of all seizures occurred after discharge from the hospital of birth.^ Idiopathic seizures occurred most frequently (0.5/1000 births), followed by seizures attributed to perinatal hypoxia/ischemia (0.4/1000 births), intracranial hemorrhage (0.2/1000 births), infection of the central nervous system (0.2/1000 births), and metabolic abnormalities (0.1/1000 births).^ Risk factors were evaluated based on birth certificate information, using univariate and multivariate analysis (logistic regression). Factors considered included birth weight, gender, ethnicity, place of birth, mother's age, method of delivery, parity, multiple birth and, among term infants, small birth weight for gestational age (SGA). Among preterm infants, very low birth weight (VLBW, $<$1500 grams) was the strongest risk factor, followed by birth in private/university hospitals with a Level III nursery compared with hospitals with a Level II nursery (RR = 2.9), and male sex (RR = 1.8). The effect of very low birth weight varied according to ethnicity. Compared to preterm infants weighing 2000-2999 grams, non-white VLBW infants were 12.0 times as likely to have seizures; whereas white VLBW infants were 2.5 times as likely. Among term infants, significant risk factors included SGA (RR = 1.8), birth in Level III nursery private/university hospitals versus hospitals with Level II nursery (RR = 2.0), and birth by cesarean section (RR = 2.2). ^
Resumo:
Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^
Resumo:
Two regions in the 3$\prime$ domain of 16S rRNA (the RNA of the small ribosomal subunit) have been implicated in decoding of termination codons. Using segment-directed PCR random mutagenesis, I isolated 33 translational suppressor mutations in the 3$\prime$ domain of 16S rRNA. Characterization of the mutations by both genetic and biochemical methods indicated that some of the mutations are defective in UGA-specific peptide chain termination and that others may be defective in peptide chain termination at all termination codons. The studies of the mutations at an internal loop in the non-conserved region of helix 44 also indicated that this structure, in a non-conserved region of 16S rRNA, is involved in both peptide chain termination and assembly of 16S rRNA.^ With a suppressible trpA UAG nonsense mutation, a spontaneously arising translational suppressor mutation was isolated in the rrnB operon cloned into a pBR322-derived plasmid. The mutation caused suppression of UAG at two codon positions in trpA but did not suppress UAA or UGA mutations at the same trpA positions. The specificity of the rRNA suppressor mutation suggests that it may cause a defect in UAG-specific peptide chain termination. The mutation is a single nucleotide deletion (G2484$\Delta$) in helix 89 of 23S rRNA (the large RNA of the large ribosomal subunit). The result indicates a functional interaction between two regions of 23S rRNA. Furthermore, it provides suggestive in vivo evidence for the involvement of the peptidyl-transferase center of 23S rRNA in peptide chain termination. The $\Delta$2484 and A1093/$\Delta$2484 (double) mutations were also observed to alter the decoding specificity of the suppressor tRNA lysT(U70), which has a mutation in its acceptor stem. That result suggests that there is an interaction between the stem-loop region of helix 89 of 23S rRNA and the acceptor stem of tRNA during decoding and that the interaction is important for the decoding specificity of tRNA.^ Using gene manipulation procedures, I have constructed a new expression vector to express and purify the cellular protein factors required for a recently developed, realistic in vitro termination assay. The gene for each protein was cloned into the newly constructed vector in such a way that expression yielded a protein with an N-terminal affinity tag, for specific, rapid purification. The amino terminus was engineered so that, after purification, the unwanted N-terminal tag can be completely removed from the protein by thrombin cleavage, yielding a natural amino acid sequence for each protein. I have cloned the genes for EF-G and all three release factors into this new expression vector and the genes for all the other protein factors into a pCAL-n expression vector. These constructs will allow our laboratory group to quickly and inexpensively purify all the protein factors needed for the new in vitro termination assay. (Abstract shortened by UMI.) ^
Resumo:
Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs $+$ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) $+$ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) $+$ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) $+$ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. 'Real time' microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ $\pm$ DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ $+$ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point. ^
Resumo:
The metabolism of the antitumor agent 6-thioguanine (TG, NSC-752) by rat liver was studied in vitro. Livers from adult male Sprague-Dawley rats were homogenized and the "liver homogenate" was subjected to differential centrifugation to obtain the "10,000 x g pellet", the "post-mitochondrial fraction", the "cytosol fraction", and the "microsomes". The homogenity of each fraction was estimated by appropriate marker enzyme assays. To delineate the in vitro metabolism of TG by rat liver, 0.2 mM of {8-('14)C}TG was incubated with different subcellular fractions in KCl-Tris-MgCl(,2) buffer, pH 7.4 at 37(DEGREES). The metabolites formed were identified by chromatography, UV spectrometry, as well as mass spectrometry. After a 1 hr incubation, TG was metabolized by the liver homogenate, the 10,000 x g pellet and the post-mitochondrial fraction mainly to 6-thioguanosine (TGR), accompanied by varying lesser amounts of 6-thiouric acid (TUA), allantoin, guanine-6-sulfinic acid (G-SO(,2)H) and an unknown product. In comparison, the cytosal fraction converted TG almost entirely to TGR and TUA in equal amounts. The formation of TGR from TG was limited by the endogenous supply of ribose-1-phosphate. With the microsomal fraction, however, TG was metabolized significantly to G-SO(,2)H and the unknown, accompanied with some TGR. After a 5 hr incubation the metabolism of TG was changed to favor the catabolic route, yielding mostly TUA in the post-mitochondrial and cytosol fractions; but mainly allantoin in the liver homogenate fraction. The kinetic studies of TG metabolism by the subcellar fractions indicated that the formation of TGR served as a depot form of TG. The level of TGR decreased when the catabolism of TG became prominent. The oxidation of TG to GSO(,2)H mediated by the hepatic microsomes represented a new catabolic pathway of TG. This GSO(,2)H, under acidic conditions, readily decomposes to guanine and inorganic sulfate. In the presence of reduced glutathione in Tris buffer, pH 7.8 at 25(DEGREES), GSO(,2)H is adducted to glutathione chemically to form S-(2-amino-purin-6-yl) glutathione and conceivably, inorganic sulfate. Therefore, the formation of GSO(,2)H from TG might have implication in the desulfuration mechanism of TG. On the other hand, the unknown formed from TG by the action of the microsomal enzymes appeared to be a TG conjugate. However, it is neither a glutathione, a glucuronide, nor a ribose conjugate. Additionally, the deamination of TG by guanine deaminase (E.C.3.5.4.3) isolated from rat liver was also investigated. TG is a poorer substrate (Km = 4.8 x 10('-3)M) for guanine deaminase than that of guanine (Km = 4.7 x 10('-6)M) at pH 7.25, optimal pH for TG as a substrate. TG is also a competitive inhibitor of guanine for guanine deaminase, with a ki of 2.2 x 10('-4)M. ^
Resumo:
OBJECTIVES This study aimed to demonstrate that the presence of late gadolinium enhancement (LGE) is a predictor of death and other adverse events in patients with suspected cardiac sarcoidosis. BACKGROUND Cardiac sarcoidosis is the most important cause of patient mortality in systemic sarcoidosis, yielding a 5-year mortality rate between 25% and 66% despite immunosuppressive treatment. Other groups have shown that LGE may hold promise in predicting future adverse events in this patient group. METHODS We included 155 consecutive patients with systemic sarcoidosis who underwent cardiac magnetic resonance (CMR) for workup of suspected cardiac sarcoid involvement. The median follow-up time was 2.6 years. Primary endpoints were death, aborted sudden cardiac death, and appropriate implantable cardioverter-defibrillator (ICD) discharge. Secondary endpoints were ventricular tachycardia (VT) and nonsustained VT. RESULTS LGE was present in 39 patients (25.5%). The presence of LGE yields a Cox hazard ratio (HR) of 31.6 for death, aborted sudden cardiac death, or appropriate ICD discharge, and of 33.9 for any event. This is superior to functional or clinical parameters such as left ventricular (LV) ejection fraction (EF), LV end-diastolic volume, or presentation as heart failure, yielding HRs between 0.99 (per % increase LVEF) and 1.004 (presentation as heart failure), and between 0.94 and 1.2 for potentially lethal or other adverse events, respectively. Except for 1 patient dying from pulmonary infection, no patient without LGE died or experienced any event during follow-up, even if the LV was enlarged and the LVEF severely impaired. CONCLUSIONS Among our population of sarcoid patients with nonspecific symptoms, the presence of myocardial scar indicated by LGE was the best independent predictor of potentially lethal events, as well as other adverse events, yielding a Cox HR of 31.6 and of 33.9, respectively. These data support the necessity for future large, longitudinal follow-up studies to definitely establish LGE as an independent predictor of cardiac death in sarcoidosis, as well as to evaluate the incremental prognostic value of additional parameters.
Resumo:
The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.
Resumo:
Contemporary models of self-regulated learning emphasize the role of distal motivational factors for student's achievement, on the one side, and the proximal role of metacognitive monitoring and control for learning and test outcomes, on the other side. In the present study, two larger samples of elementary school children (9- and 11-year-olds) were included and their mastery-oriented motivation, metacognitive monitoring and control skills were integrated into structural equation models testing and comparing the relative impact of these different constituents for self-regulated learning. For one, results indicate that the factorial structure of monitoring, control and mastery motivation was invariant across the two age groups. Of specific interest was the finding that there were age-dependent structural links between monitoring, control, and test performance (closer links in the older compared to the younger children), with high confidence yielding a direct and positive effect on test performance and a direct and negative effect on adequate control behavior in the achievement test. Mastery-oriented motivation was not found to be substantially associated with monitoring (confidence), control (detection and correction of errors), or test performance underlining the importance of proximal, metacognitive factors for test performance in elementary school children.
Resumo:
OBJECTIVES: Proteomics approaches to cardiovascular biology and disease hold the promise of identifying specific proteins and peptides or modification thereof to assist in the identification of novel biomarkers. METHOD: By using surface-enhanced laser desorption and ionization time of flight mass spectroscopy (SELDI-TOF-MS) serum peptide and protein patterns were detected enabling to discriminate between postmenopausal women with and without hormone replacement therapy (HRT). RESULTS: Serum of 13 HRT and 27 control subjects was analyzed and 42 peptides and proteins could be tentatively identified based on their molecular weight and binding characteristics on the chip surface. By using decision tree-based Biomarker Patternstrade mark Software classification and regression analysis a discriminatory function was developed allowing to distinguish between HRT women and controls correctly and, thus, yielding a sensitivity of 100% and a specificity of 100%. The results show that peptide and protein patterns have the potential to deliver novel biomarkers as well as pinpointing targets for improved treatment. The biomarkers obtained represent a promising tool to discriminate between HRT users and non-users. CONCLUSION: According to a tentative identification of the markers by their molecular weight and binding characteristics, most of them appear to be part of the inflammation induced acute-phase response
Resumo:
Elevation of ketone bodies occurs frequently after parturition during negative energy balance in high yielding dairy cows. Previous studies illustrated that hyperketonemia interferes with metabolism and it is assumed that it impairs the immune response. However, a causative effect of ketone bodies could not be shown in vivo before, because spontaneous hyperketonemia comes usually along with high NEFA and low glucose concentrations. The objective was to study effects of beta-hydroxybutyrate (BHBA) infusion and an additional intramammary lipopolysaccharide (LPS) challenge on metabolism and immune response in dairy cows. Thirteen dairy cows received intravenously either a BHBA infusion (group BHBA, n=5) to induce hyperketonemia (1.7 mmol/L), or an infusion with a 0.9 % saline solution (Control, n=8) for 56 h. Infusions started at 0900 on day 1 and continue up to 1700 two days later. Two udder quarters were challenged with 200 μg Escherichia coli-LPS 48 h after the start of infusion. Blood samples were taken one week and 2 h before the start of infusions as reference samples and hourly during the infusion. Liver and mammary gland biopsies were taken one week before the start of the infusion, 48 h after the start of the infusion, and mammary tissues was additionally taken 8 h after LPS challenge (56 h after the start of infusions). Rectal temperature (RT) and somatic cell count (SCC) was measured before and 48 h after the start of infusions and hourly during LPS challenge. Blood samples were analyzed for plasma glucose, BHBA, NEFA, triglyceride, urea, insulin, glucagon, and cortisol concentration. The mRNA abundance of factors related to potential adaptations of metabolism and immune system was measured in liver and mammary tissue biopsies. Differences between blood constituents, RT, SCC, and mRNA abundance before and 48 h after the start of infusions, and differences between mRNA abundance before and after LPS challenges were tested for significance by GLM of SAS procedure with treatment as fixed effect. Area under the curve was calculated for blood variables during 48 h BHBA infusion and during the LPS challenge, and additionally for RT and SCC during the LPS challenge. Most surprisingly, both plasma glucose and glucagon concentration decreased during the 48 h of BHBA infusion (P<0.05). During the 48 h of BHBA infusion, serum amyloid A mRNA abundance in mammary gland was increased (P<0.01), and haptoglobin (Hp) mRNA abundance tended to increase in cows treated with BHBA compared to control group (P= 0.07). RT, SCC, and candidate genes related to immune response in the liver were not affected by BHBA infusion. However, during LPS challenge the expected increase of both plasma glucose and glucagon concentration was much less pronounced in the animals treated with BHBA (P<0.05) and also SCC increased much less pronounced in the animals infused with BHBA (P<0.05) than in the controls. An increased BHBA infusion rate to maintain plasma BHBA constant could not fully compensate for the decreased plasma BHBA during the LPS challenge which indicates that BHBA is used as an energy source during the immune response. In addition, BHBA infused animals showed a more pronounced increase of mRNA abundance of IL-8, IL-10, and citrate synthase in the mammary tissue of LPS challenged quarters (P<0.05) than control animals. Results demonstrate that infusion of BHBA affects metabolism through decreased plasma glucose concentration which is likely related to a decreased release of glucagon during hyperketonemia and during additional inflammation. It also affects the systemic and mammary immune response which may reflect the increased susceptibility for mastitis during spontaneous hyperketonemia. The obviously reduced gluconeogenesis in response to BHBA infusion may be a mechanism to stimulated the use of BHBA as an energy source instead of glucose, and/or to save oxaloacetate for the citric acid cycle instead of gluconeogenesis and as a consequence to reduce ketogenesis.
Resumo:
Introduction: According to the theoretical model of Cranach, Ochsenbein, and Valach (1986) understanding group actions needs consideration of aspects at both the group level and the level of individual members. For example individual action units constituting group actions are motivated at the individual level while potentially being affected by characteristics of the group. Theoretically, group efficacy beliefs could be a part of this motivational process as they are an individual’s cognitive contents about group-level abilities to perform well in a specific task. Positive relations between group level efficacy-beliefs and group performance have been reported and Bandura and Locke (2003) argue that this relationship is being mediated by motivational processes and goal setting. The aims of this study were a) to examine the effects of group characteristics on individual performance motivation and b) to test if those are mediated by individual group efficacy beliefs. Methods: Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the university of Berne participated in this scenario based experiment. Data were collected on two collection points. Subjects were provided information about fictive team members with whom they had to perform a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking respectively) were combined in a 3x3 full factorial design (Anderson, 1982) yielding nine groups. Subjects were asked how confident they were that the teams would perform well in the task (individual group efficacy beliefs), and to provide information about their motivation to perform at their best in the respective group contexts (performance motivation). Multilevel modeling (Mplus) was used to estimate the effects of the factors swim and bike, and the context-varying covariate individual group efficacy beliefs on performance motivation. Further analyses were undertaken to test if the effects of group contexts on performance motivation are mediated by individual group efficacy beliefs. Results: Significant effects were reported for both the group characteristics (βswim = 7.86; βbike = 8.57; both p < .001) and the individual group efficacy beliefs (βigeb; .40, p < .001) on performance motivation. The subsequent mediation model indicated that the effects of group characteristics on performance motivation were partly mediated by the individual group efficacy beliefs of the subjects with significant mediation effects for both factors swim and bike. Discussion/Conclusion: The results of the study provide further support for the motivational character of efficacy beliefs and point out a mechanism by which team characteristics influence performance relevant factors at the level of individual team members. The study indicates that high team abilities lead to augmented performance motivation, adding a psychological advantage to teams already high on task relevant abilities. Future investigations will be aiming at possibilities to keep individual performance motivation high in groups with low task relevant abilities. One possibility could be the formulation of individual task goals. References: Anderson, N. H. (1982). Methods of information integration theory. New York: Academic Press. Bandura, A. & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88, 87-99. Cranach, M. von, Ochsenbein, G. & Valach, L. (1986). The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.
Resumo:
Introduction Research has shown that individuals infer their group-efficacy beliefs from the groups’ abilities to perform in specific tasks. Group abilities also seem to affect team members’ performance motivation adding a psychological advantage to teams already high on task relevant abilities. In a recent study we found the effect of group abilities on individual performance motivation to be partially mediated by the team members’ individual group-efficacy beliefs which is an example of how attributes on a group-level can be affecting individual-level parameters. Objectives The study aimed at testing the possibility to reduce the direct and mediated effects of low group abilities on performance motivation by augmenting the visibility of individual contributions to group performances via the inclusion of a separate ranking on individual performances. Method Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the University of Bern participated in the study. At three collection points (t1-3) subjects were provided information about fictive team members with whom they had to imagine performing a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking) were combined in a 3x3 full factorial design yielding nine groups with different ability profiles. At t1 subjects were asked to rate their confidence that the teams would perform well in the triathlon task, at t2 and t3 subjects were asked how motivated they were to perform at their best in the respective groups. At t3 the presence of an individual performance ranking was mentioned in the cover story. Mixed linear models (SPSS) and structural equation models for complex survey data (Mplus) were specified to estimate the effects of the individual performance rankings on the relationship between group-efficacy beliefs and performance motivation. Results A significant interaction effect for individual group-efficacy beliefs and the triathlon condition on performance motivation was found; the effect of group-efficacy beliefs on performance motivation being smaller with individual performance rankings available. The partial mediation of group attributes on performance motivation by group-efficacy beliefs disappeared with the announcement of individual performance rankings. Conclusion In teams low in task relevant abilities the disadvantageous effect of group-efficacy beliefs on performance motivation might be reduced by providing means of evaluating individual performances apart from a group’s overall performance. While it is believed that a common group goal is a core criterion for a well performing sport group future studies should also aim at the possible benefit of individualized goal setting in groups.