923 resultados para XRD, Raman, SEM, TEM, XPS, cobalt hydroxide, cobalt oxyhydroxide, cobalt oxide
Resumo:
The kaolinite-like phyllosilicate minerals bismutoferrite BiFe3+2Si2O8(OH) and chapmanite SbFe3+2Si2O8(OH) have been studied by Raman spectroscopy and complemented with infrared spectra. Tentatively interpreted spectra were related to their molecular structure. The antisymmetric and symmetric stretching vibrations of the Si-O-Si bridges, SiOSi and OSiO bending vibrations, (Si-Oterminal)- stretching vibrations, OH stretching vibrations of hydroxyl ions, and OH bending vibrations were attributed to observed bands. Infrared bands 3289-3470 cm-1 and Raman bands 1590-1667 cm-1 were assigned to adsorbed water. O-H...O hydrogen bond lengths were calculated from the Raman and infrared spectra.
Resumo:
Insight into the unique structure of hydrotalcites has been obtained using Raman spectroscopy. Gallium containing hydrotalcites of formula Mg4Ga2(CO3)(OH)12•4H2O (2:1 Ga-HT) to Mg8Ga2(CO3)(OH)20•4H2O (4:1 Ga-HT) have been successfully synthesised and characterized by X-ray diffraction and Raman spectroscopy. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium containing hydrotalcite. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium containing hydrotalcites of formula Mg6Ga2(CO3)(OH)16•4H2O. Raman bands observed at around 1046, 1048 and 1058 cm-1 were attributed to the symmetric stretching modes of the (CO32-) units. Multiple ν3 CO32- antisymmetric stretching modes are found at around 1346, 1378, 1446, 1464 and 1494 cm-1. The splitting of this mode indicates the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm-1 assigned to the ν4 (CO32-) modes support the concept of multiple carbonate species in the interlayer.
Resumo:
Several specimens of Libyan Desert Glass (LDG), an enigmatic natural glass from Egypt, were subjected to investigation by micro-Raman spectroscopy. The spectra of inclusions inside the LDG samples were successfully measured through the layers of glass and the mineral species were identified on this basis. The presence of cristobalite as typical for high-temperature melt products was confirmed, together with co-existing quartz. TiO2 was determined in two polymorphic species, rutile and anatase. Micro-Raman spectroscopy proved also the presence of minerals unusual for high-temperature glasses such as anhydrite and aragonite.
Resumo:
Insight into the unique structure of layered double hydroxides has been obtained using a combination of X-ray diffraction and thermal analysis. Indium containing hydrotalcites of formula Mg4In2(CO3)(OH)12•4H2O (2:1 In-LDH) through to Mg8In2(CO3)(OH)18•4H2O (4:1 In-LDH) with variation in the Mg:In ratio have been successfully synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium containing layered double hydroxide. Distinct mass loss steps attributed to dehydration, dehydroxylation and decarbonation are observed for the indium containing hydrotalcite. Dehydration occurs over the temperature range ambient to 205 °C. Dehydroxylation takes place in a series of steps over the 238 to 277 °C temperature range. Decarbonation occurs between 763 and 795 °C. The dehydroxylation and decarbonation steps depend upon the Mg:In ratio. The formation of indium containing hydrotalcites and their thermal activation provides a method for the synthesis of indium oxide based catalysts.
Resumo:
The mineral geminite, an hydrated hydroxy-arsenate mineral of formula Cu(AsO3OH)•H2O, has been studied by Raman and infrared spectroscopy. Two minerals from different origins were investigated and the spectra proved quite similar. In the Raman spectra of geminite, four bands are observed at 813, 843, 853 and 885 cm-1. The assignment of these bands is as follows: (a) The band at 853 cm-1 is assigned to the AsO43- ν1 symmetric stretching mode (b) the band at 885 cm-1 is assigned to the AsO3OH2- ν1 symmetric stretching mode (c) the band at 843 cm-1 is assigned to the AsO43- ν3 antisymmetric stretching mode (d) the band at 813 cm-1 is ascribed to the AsO3OH2- ν3 antisymmetric stretching mode. Two Raman bands at 333 and 345 cm-1 are attributed to the ν2 AsO4 3- bending mode and a set of higher wavenumber bands are assigned to the ν4 AsO43- bending mode. A very complex set of overlapping bands is observed in both the Raman and infrared spectra. Raman bands are observed at 2288, 2438, 2814, 3152, 3314, 3448 and 3521 cm-1. Two Raman bands at 2288 and 2438 cm-1 are ascribed to very strongly hydrogen bonded water. The broader Raman bands at 3152 and 3314 cm-1 may be assigned to adsorbed water and not so strongly hydrogen bonded water in the molecular structure of geminate. Two bands at 3448 and 3521 cm-1 are assigned to the OH stretching vibrations of the (AsO3OH)2- units. Raman spectroscopy identified Raman bands attributable to AsO43- and AsO3OH2- units.