976 resultados para Wooden beams and girders
Resumo:
Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.
Resumo:
The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (> 10(19) W/cm(2)) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (
Resumo:
Filamented electron beams have been observed to be emitted from the rear of thin solid targets irradiated by a high-intensity short-pulse laser when there is low-density plasma present at the back of the target. These. observations are consistent with a laser-generated beam of relativistic electrons propagating through the, target. which is subsequently fragmented by a Weibel-like instability in the low-density plasma at the. rear. These, measurements are in agreement with particle-in-cell simulations and theory, since the filamentation instability is predicted to be dramatically enhanced when the electron beam density approaches that of the background plasma.
Resumo:
Investigations of Li-7(p,n)Be-7 reactions using Cu and CH primary and LiF secondary targets were performed using the VULCAN laser [C.N. Danson , J. Mod. Opt. 45, 1653 (1997)] with intensities up to 3x10(19) W cm(-2). The neutron yield was measured using CR-39 plastic track detector and the yield was up to 3x10(8) sr(-1) for CH primary targets and up to 2x10(8) sr(-1) for Cu primary targets. The angular distribution of neutrons was measured at various angles and revealed a relatively anisotropic neutron distribution over 180degrees that was greater than the error of measurement. It may be possible to exploit such reactions on high repetition, table-top lasers for neutron radiography. (C) 2004 American Institute of Physics.
Resumo:
Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 10(20) W cm(-2)) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce P-emitting nuclei of relevance to the nuclear medicine community, namely C-11 and N-13 via (p, n) and (p, alpha) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.
Resumo:
The process of second harmonic generation (SHG) in undercritical plasmas is studied. It is shown that filamentation and self-focusing of the laser beam in the plasma can break the plasma density symmetry and lead to SHG by free electrons. In turn, second harmonic emission may be used to investigate the plasma parameters and to diagnose the process of laser beam filamentation itself.
Resumo:
Non-resonant multiphoton ionization combined with quadrupole and time-of-flight analysis has been used to study sputtering by both atomic and molecular ion beams. The mass spectra and energy distributions of both sputtered atoms and secondary ions produced by 3.6 keV Ar+, N+, N-2(+), CF2+ and CF3+ ion bombardment at 45 degrees to a polycrystalline copper target have been measured. The energy distributions of the copper ions and atoms are found to be different and quite complex. The ion distributions can generally be described by a linear collision cascade model, with possible evidence for a knock-on contribution. The sputtered atom distributions are partially described by a combination of linear collision cascade and dense cascade (thermal spike) models. This is interpreted as support for a time-evolving sputtering mechanism.