921 resultados para Wireless Networks


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article describes a distributed hyperspherical cluster based algorithm for identifying anomalies in measurements from a wireless sensor network, and an implementation on a real wireless sensor network testbed. The communication overhead incurred in the network is minimised by clustering sensor measurements and merging clusters before sending a compact description of the clusters to other nodes. An evaluation on several real and synthetic datasets demonstrates that the distributed hyperspherical cluster-based scheme achieves comparable detection accuracy with a significant reduction in communication overhead compared to a centralised scheme, where all the sensor node measurements are communicated to a central node for processing. .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two new incremental models for online anomaly detection in data streams at nodes in wireless sensor networks are discussed. These models are incremental versions of a model that uses ellipsoids to detect first, second, and higher-ordered anomalies in arrears. The incremental versions can also be used this way but have additional capabilities offered by processing data incrementally as they arrive in time. Specifically, they can detect anomalies 'on-the-fly' in near real time. They can also be used to track temporal changes in near real-time because of sensor drift, cyclic variation, or seasonal changes. One of the new models has a mechanism that enables graceful degradation of inputs in the distant past (fading memory). Three real datasets from single sensors in deployed environmental monitoring networks are used to illustrate various facets of the new models. Examples compare the incremental version with the previous batch and dynamic models and show that the incremental versions can detect various types of dynamic anomalies in near real time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The converge-cast in wireless sensor networks (WSNs) is widely applied in many fields such as medical applications and the environmental monitoring. WSNs expect not only providing routing with high throughput but also achieving efficient energy saving. Network coding is one of the most promising techniques to reduce the energy consumption. By maximizing the encoding number, the message capacity per package can be extended to the most efficient condition. Thus, many researchers have focused their work on this field. Nevertheless, the packages sent by the outer nodes need to be temporary stored and delayed in order to maximize the encoding number. To find out the balance between inserting the delay time and maximizing the encoding number, a Converge-cast Scheme based on data collection rate prediction (CSRP) is proposed in this paper. To avoid producing the outdated information, a prediction method based on Modifying Index Curve Model is presented to deal with the dynamic data collection rate of every sensor in WSNs. Furthermore, a novel coding conditions based on CDS is proposed to increase the coding opportunity and to solve the collision problems. The corresponding analysis and experimental results indicate that the feasibility and efficiency of the CSRP is better than normal conditions without the prediction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensor networks are a branch of distributed ad hoc networks with a broad range of applications in surveillance and environment monitoring. In these networks, message exchanges are carried out in a multi-hop manner. Due to resource constraints, security professionals often use lightweight protocols, which do not provide adequate security. Even in the absence of constraints, designing a foolproof set of protocols and codes is almost impossible. This leaves the door open to the worms that take advantage of the vulnerabilities to propagate via exploiting the multi-hop message exchange mechanism. This issue has drawn the attention of security researchers recently. In this paper, we investigate the propagation pattern of information in wireless sensor networks based on an extended theory of epidemiology. We develop a geographical susceptible-infective model for this purpose and analytically derive the dynamics of information propagation. Compared with the previous models, ours is more realistic and is distinguished by two key factors that had been neglected before: 1) the proposed model does not purely rely on epidemic theory but rather binds it with geometrical and spatial constraints of real-world sensor networks and 2) it extends to also model the spread dynamics of conflicting information (e.g., a worm and its patch). We do extensive simulations to show the accuracy of our model and compare it with the previous ones. The findings show the common intuition that the infection source is the best location to start patching from, which is not necessarily right. We show that this depends on many factors, including the time it takes for the patch to be developed, worm/patch characteristics as well as the shape of the network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional tracking solutions in wireless sensor networks based on fixed sensors have several critical problems. First, due to the mobility of targets, a lot of sensors have to keep being active to track targets in all potential directions, which causes excessive energy consumption. Second, when there are holes in the deployment area, targets may fail to be detected when moving into holes. Third, when targets stay at certain positions for a long time, sensors surrounding them have to suffer heavier work pressure than do others, which leads to a bottleneck for the entire network. To solve these problems, a few mobile sensors are introduced to follow targets directly for tracking because the energy capacity of mobile sensors is less constrained and they can detect targets closely with high tracking quality. Based on a realistic detection model, a solution of scheduling mobile sensors and fixed sensors for target tracking is proposed. Moreover, the movement path of mobile sensors has a provable performance bound compared to the optimal solution. Results of extensive simulations show that mobile sensors can improve tracking quality even if holes exist in the area and can reduce energy consumption of sensors effectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) provide a low cost option for monitoring different environments such as farms, forests and water and electricity networks. However, the restricted energy resources of the network impede the collection of raw monitoring data from all the nodes to a single location for analysis. This has stimulated research into efficient anomaly detection techniques to extract information about unusual events such as malicious attacks or faulty sensors at each node. Many previous anomaly detection methods have relied on centralized processing of measurement data, which is highly communication intensive. In this paper, we present an efficient algorithm to detect anomalies in a decentralized manner. In particular, we propose a novel adaptive model for anomaly detection, as well as a robust method for modeling normal behavior. Our evaluation results on both real-life and simulated data sets demonstrate the accuracy of our approach compared to existing methods.