940 resultados para Wind Turbine
Resumo:
The public is typically in agreement with the renewable energy targets established in many national states and generally supports the idea of increased reliance on wind energy. Nevertheless, many specific wind power projects face significant local opposition. A key question for the wind energy sector is, therefore, how to better engage local people to foster support for specific projects. IEA Wind Task 28 on Social Acceptance of Wind Energy Projects aims to facilitate wind energy development by reviewing current practices, emerging ideas, and exchanging successful practices among the participating countries. It also aims to disseminate the insights of leading research to a nontechnical audience, including project developers, local planning officials, and the general public. The interdisciplinary approach adopted by Task 28 enables an in-depth understanding of the nature of opposition to wind projects and a critical assessment of emerging strategies for social acceptance. Task 28 has analyzed a range of key issues related to social acceptance of wind energy, including the impacts on landscapes and ecosystems, on standard of living and well-being, the implementation of energy policy and spatial planning, the distribution of costs and benefits, and procedural justice. It is clear that although wind energy has many benefits; however, specific projects do impact local communities. As such the concerns of the affected people have to be taken seriously. Moreover, as opposition is rarely without foundation, it is in the interests of developers and advocates to engage local people and to improve projects for the benefit of all.
Resumo:
To develop real-time simulations of wind instruments, digital waveguides filters can be used as an efficient representation of the air column. Many aerophones are shaped as horns which can be approximated using conical sections. Therefore the derivation of conical waveguide filters is of special interest. When these filters are used in combination with a generalized reed excitation, several classes of wind instruments can be simulated. In this paper we present the methods for transforming a continuous description of conical tube segments to a discrete filter representation. The coupling of the reed model with the conical waveguide and a simplified model of the termination at the open end are described in the same way. It turns out that the complete lossless conical waveguide requires only one type of filter.Furthermore, we developed a digital reed excitation model, which is purely based on numerical integration methods, i.e., without the use of a look-up table.
Resumo:
Capillary-based systems for measuring the input impedance of musical wind instruments were first developed in the mid-20th century and remain in widespread use today. In this paper, the basic principles and assumptions underpinning the design of such systems are examined. Inexpensive modifications to a capillary-based impedance measurement set-up made possible due to advances in computing and data acquisition technology are discussed. The modified set-up is able to measure both impedance magnitude and impedance phase even though it only contains one microphone. In addition, a method of calibration is described that results in a significant improvement in accuracy when measuring high impedance objects on the modified capillary-based system. The method involves carrying out calibration measurements on two different objects whose impedances are well-known theoretically. The benefits of performing two calibration measurements (as opposed to the one calibration measurement that has been traditionally used) are demonstrated experimentally through input impedance measurements on two test objects and a Boosey and Hawkes oboe. © S. Hirzel Verlag · EAA.
Resumo:
One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non-uniform inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non-uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.