974 resultados para Webless Migratory Game Bird Research Program (U.S.)
Resumo:
InGaN p-i-n homojunction structures were grown by metal-organic chemical vapor deposition, and solar cells with different p-contact schemes were fabricated. X-ray diffraction measurements demonstrated that the epitaxial layers have a high crystalline quality. Solar cells with semitransparent p-contact exhibited a fill factor (FF) of 69.4%, an open-circuit voltage (V-oc) of 2.24 V and an external quantum efficiency (EQE) of 41.0%. On the other hand, devices with grid p-contact showed the corresponding values of 57.6%, 2.36 V, 47.9% and a higher power density. These results indicate that significant photo-responses can be achieved in InGaN p-i-n solar cells.
Resumo:
We develop a swept frequency method for measuring the frequency response of photodetectors; (PDs) based on harmonic analysis. In this technique, a lightwave from a laser source is modulated by a radio-frequency (RF) signal via a Mach-Zehnder LiNbO3 modulator, and detected by a PD under test. The measured second-order harmonic of the RF signal contains information of the frequency responses and nonlinearities of the RF source, modulator, and PD. The frequency response of the PD alone is obtained by deducting the known frequency responses and nonlinearities of the RF source and modulator. Compared with the conventional swept frequency method, the measurement frequency range can be doubled using the proposed method. Experiment results show a good agreement between the measured results and those obtained using other techniques.
Resumo:
A novel integratable and high speed InGaAsP multi-quantum well (MQW) complex-coupled distributed feedback (DFB) laser is successfully fabricated on a semi-insulating substrate. The fabricated ridge DFB laser exhibits a threshold current of 26 mA, a slope efficiency of 0.14 W.A(-1) and a side mode suppression ratio of 40 dB together with a 3 dB bandwidth of more than 8 GHz. The device is suitable for 10 Gbit/s optical fiber communication.
Resumo:
We investigate the spin relaxation time of holes in an ultrathin neutral InAs monolayer (1.5 ML) and compare with that of electrons, using polarization-dependent time-resolved photoluminescence (TRPL) experiments. With excitation energies above the GaAs gap, we observe a rather slow relaxation of holes (tau(1h) = 196 +/- 17 ps) that is in the magnitude similar to electrons (tau(1e) = 354 +/- 32 ps) in this ultrathin sample. The results are in good agreement with earlier theoretical prediction, and the phonon scattering due to spin-orbit coupling is realized to play a dominant role in the carrier spin kinetics.
Resumo:
The gain mechanism in GaN Schottky barrier ultraviolet photodetectors is investigated by focused light beam. When the incident light illuminates the central region of the Schottky contact electrode, the responsivity changes very little with the increase of reverse bias voltage. However, when the incident light illuminates the edge region of the electrode, the responsivity increases remarkably with the increase of reverse bias voltage, and the corresponding quantum efficiency could be even higher than 100%. It is proposed that the surface states near the edge of the electrode may lead to a reduction of effective Schottky barrier height and an enhancement of electron injection, resulting in the anomalous gain.
Resumo:
Silicon-on-insulator (SOI) substrate is widely used in micro-electro-mechanical systems (MEMS). With the buried oxide layer of SOI acting as an etching stop, silicon based micro neural probe can be fabricated with improved uniformity and manufacturability. A seven-record-site neural probe was formed by inductive-coupled plasma (ICP) dry etching of an SOI substrate. The thickness of the probe is 15 mu m. The shaft of the probe has dimensions of 3 mmx100 mu mx15 mu m with typical area of the record site of 78.5 mu m(2). The impedance of the record site was measured in-vitro. The typical impedance characteristics of the record sites are around 2 M Omega at 1 kHz. The performance of the neural probe in-vivo was tested on anesthetic rat. The recorded neural spike was typically around 140 mu V. Spike from individual site could exceed 700 mu V. The average signal noise ratio was 7 or more.
Resumo:
We report a room temperature study of the direct band gap photoluminescence of tensile-strained Ge/Si0.13Ge0.87 multiple quantum wells grown on Si-based germanium virtual substrates by ultrahigh vacuum chemical vapor deposition. Blueshifts of the luminescence peak energy from the Ge quantum wells in comparison with the Ge virtual substrate are in good agreement with the theoretical prediction when we attribute the luminescence from the quantum well to the c Gamma 1-HH1 direct band transition. The reduction in direct band gap in the tensile strained Ge epilayer and the quantum confinement effect in the Ge/Si0.13Ge0.87 quantum wells are directly demonstrated by room temperature photoluminescence.
Resumo:
We study the effects of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the ground-state properties of the Heisenberg XY spin chain by means of the fidelity susceptibility, order parameter, and entanglement entropy. Our results show that the DM interaction could influence the distribution of the regions of quantum phase transitions and cause different critical regions in the XY spin model. Meanwhile, the DM interaction has effective influence on the degree of entanglement of the system and could be used to increase the entanglement of the spin system.
Resumo:
Short period InAs(4 ML)/GaSb(8 ML) superlattices (SLs) with InSb- and mixed-like (or Ga(1-x)In(x)As(1-)ySb(y)-like) interfaces (IFs) are grown by molecular-beam epitaxy (MBE) on (001) GaSb substrates at optimized growth temperature. Raman scattering reveals that two kinds of IFs can be formed by controlling shutter sequences. X-ray diffraction (XRD) and atomic force microscopy (AFM) demonstrate that SLs with mixed-like IFs are more sensitive to growth temperature than that with InSb-like IFs. The photoluminescence (PL) spectra of SLs with mixed-like IFs show a stronger intensity and narrower line width than with InSb-like IFs. It is concluded that InAs/GaSb SLs with mixed-like IFs have better crystalline and optical properties.
Resumo:
The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higher T (c) useful for the nano-materials design of spintronics.
Resumo:
The characteristics of a resonant cavity-enhanced InGaAs/GaAs quantum-dot n-i-n photodiode with only a bottom distributed Bragg reflector used as the cavity mirror, are reported. To suppress the dark current, an AlAs layer is inserted into the device structure as the blocking layer. It turns out that the structure still possesses the resonant coupling nature, and makes Rabi splitting discernible in the photoluminescence spectra. The measured responsivity spectrum of the photocurrent shows a peak at lambda = 1030 nm, and increases rapidly as the bias voltage increases. A peak responsivity of 0.75 A/W, or equivalently an external quantum efficiency of 90.3%, is obtained at V-bias = -1.4 V.
Resumo:
The photoluminescence correlation from a single CdSe nanocrystal under pulsed excitation is studied, and a single photon is realized at wavelength 655 nm at room temperature. The single colloidal CdSe quantum dot is prepared on a SiO2/silicon surface by a drop-and-drag technique. The long-term stability of the single-photon source is investigated; it is found that the antibunching effect weakens with excitation time, and the reason for the weakening is attributed to photobleaching. The lifetimes of photoluminescence from a single quantum dot are analyzed at different excitation times. By analyzing the probability distribution of on and off times of photoluminescence, the Auger assisted tunneling and Auger assisted photobleaching models are applied to explain the antibunching phenomenon.
Resumo:
Spontaneous emission from GaAs/AlGaAs quantum dots (QDs) embedded in photonic crystals with a narrow photonic band gap is studied theoretically. The results show that the decay lifetime is very sensitive to the sizes of QDs, and both inhibited and accelerated emission can occur, which had been indicated in a previous experiment. The Weisskopf-Wigner approximation, good for atoms and molecules, may be incorrect for QDs. A damped Rabi oscillation of the excited state with the transition frequency outside the photonic band gap may appear, which is impossible for atoms and molecules. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We study the spin Hall effect in the kagome lattice with Rashba spin-orbit coupling. The conserved spin Hall conductance sigma(s)(xy) (see text) and its two components, i.e., the conventional term sigma(s0)(xy) and the spin-torque-dipole term sigma(s tau)(xy), are numerically calculated, which show a series of plateaus as a function of the electron Fermi energy epsilon(F). A consistent two-band analysis, as well as a Berry-phase interpretation, is also given. We show that these plateaus are a consequence of various Fermi-surface topologies when tuning epsilon(F). In particular, we predict that compared to the case with the Fermi surface encircling the Gamma point in the Brillouin zone, the amplitude of the spin Hall conductance with the Fermi surface encircling the K points is twice enhanced, which makes it highly meaningful in the future to systematically carry out studies of the K-valley spintronics.
Resumo:
In this paper, we propose the dynamic P-V curve for modulator and P-I curve for laser diode, and present a simple approach to deriving the curves from the small-signal frequency responses measured using a microwave network analyzer. The linear response range, modulation efficiency, optimal driving conditions at different frequency can, therefore, be determined. It is demonstrated that the large-signal performance of electro-absorption (EA) modulator and the directly modulated semiconductor lasers can be predicted from the dynamic curved surface. Experiments show a good agreement between the evaluated characteristics and the measured large-signal performance.