996 resultados para Wave guides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

M. Hieber, I. Wood: Asymptotics of perturbations to the wave equation. In: Evolution Equations, Lecture Notes in Pure and Appl. Math., 234, Marcel Dekker, (2003), 243-252.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shock wave lithotripsy is the preferred treatment modality for kidney stones in the United States. Despite clinical use for over twenty-five years, the mechanisms of stone fragmentation are still under debate. A piezoelectric array was employed to examine the effect of waveform shape and pressure distribution on stone fragmentation in lithotripsy. The array consisted of 170 elements placed on the inner surface of a 15 cm-radius spherical cap. Each element was driven independently using a 170 individual pulsers, each capable of generating 1.2 kV. The acoustic field was characterized using a fiber optic probe hydrophone with a bandwidth of 30 MHz and a spatial resolution of 100 μm. When all elements were driven simultaneously, the focal waveform was a shock wave with peak pressures p+ =65±3MPa and p−=−16±2MPa and the −6 dB focal region was 13 mm long and 2 mm wide. The delay for each element was the only control parameter for customizing the acoustic field and waveform shape, which was done with the aim of investigating the hypothesized mechanisms of stone fragmentation such as spallation, shear, squeezing, and cavitation. The acoustic field customization was achieved by employing the angular spectrum approach for modeling the forward wave propagation and regression of least square errors to determine the optimal set of delays. Results from the acoustic field customization routine and its implications on stone fragmentation will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wave energy industry is progressing towards an advanced stage of development, with consideration being given to the selection of suitable sites for the first commercial installations. An informed, and accurate, characterisation of the wave energy resource is an essential aspect of this process. Ireland is exposed to an energetic wave climate, however many features of this resource are not well understood. This thesis assesses and characterises the wave energy resource that has been measured and modelled at the Atlantic Marine Energy Test Site, a facility for conducting sea trials of floating wave energy converters that is being developed near Belmullet, on the west coast of Ireland. This characterisation process is undertaken through the analysis of metocean datasets that have previously been unavailable for exposed Irish sites. A number of commonly made assumptions in the calculation of wave power are contested, and the uncertainties resulting from their application are demonstrated. The relationship between commonly used wave period parameters is studied, and its importance in the calculation of wave power quantified, while it is also shown that a disconnect exists between the sea states which occur most frequently at the site and those that contribute most to the incident wave energy. Additionally, observations of the extreme wave conditions that have occurred at the site and estimates of future storms that devices will need to withstand are presented. The implications of these results for the design and operation of wave energy converters are discussed. The foremost contribution of this thesis is the development of an enhanced understanding of the fundamental nature of the wave energy resource at the Atlantic Marine Energy Test Site. The results presented here also have a wider relevance, and can be considered typical of other, similarly exposed, locations on Ireland’s west coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis initially gives an overview of the wave industry and the current state of some of the leading technologies as well as the energy storage systems that are inherently part of the power take-off mechanism. The benefits of electrical energy storage systems for wave energy converters are then outlined as well as the key parameters required from them. The options for storage systems are investigated and the reasons for examining supercapacitors and lithium-ion batteries in more detail are shown. The thesis then focusses on a particular type of offshore wave energy converter in its analysis, the backward bent duct buoy employing a Wells turbine. Variable speed strategies from the research literature which make use of the energy stored in the turbine inertia are examined for this system, and based on this analysis an appropriate scheme is selected. A supercapacitor power smoothing approach is presented in conjunction with the variable speed strategy. As long component lifetime is a requirement for offshore wave energy converters, a computer-controlled test rig has been built to validate supercapacitor lifetimes to manufacturer’s specifications. The test rig is also utilised to determine the effect of temperature on supercapacitors, and determine application lifetime. Cycle testing is carried out on individual supercapacitors at room temperature, and also at rated temperature utilising a thermal chamber and equipment programmed through the general purpose interface bus by Matlab. Application testing is carried out using time-compressed scaled-power profiles from the model to allow a comparison of lifetime degradation. Further applications of supercapacitors in offshore wave energy converters are then explored. These include start-up of the non-self-starting Wells turbine, and low-voltage ride-through examined to the limits specified in the Irish grid code for wind turbines. These applications are investigated with a more complete model of the system that includes a detailed back-to-back converter coupling a permanent magnet synchronous generator to the grid. Supercapacitors have been utilised in combination with battery systems for many applications to aid with peak power requirements and have been shown to improve the performance of these energy storage systems. The design, implementation, and construction of coupling a 5 kW h lithium-ion battery to a microgrid are described. The high voltage battery employed a continuous power rating of 10 kW and was designed for the future EV market with a controller area network interface. This build gives a general insight to some of the engineering, planning, safety, and cost requirements of implementing a high power energy storage system near or on an offshore device for interface to a microgrid or grid.