927 resultados para Wave Propagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of high-velocity sheet-forming techniques where the strain rates are in excess of 10(2)/s can help us solve many problems that are difficult to overcome with traditional metal-forming techniques. In this investigation, thin metallic plates/foils were subjected to shock wave loading in the newly developed diaphragmless shock tube. The conventional shock tube used in the aerodynamic applications uses a metal diaphragm for generating shock waves. This method of operation has its own disadvantages including the problems associated with repeatable and reliable generation of shock waves. Moreover, in industrial scenario, changing metal diaphragms after every shot is not desirable. Hence, a diaphragmless shock tube is calibrated and used in this study. Shock Mach numbers up to 3 can be generated with a high degree of repeatability (+/- 4 per cent) for the pressure jumps across the primary shock wave. The shock Mach number scatter is within +/- 1.5 per cent. Copper, brass, and aluminium plates of diameter 60 mm and thickness varying from 0.1 to 1 mm are used. The plate peak over-pressures ranging from 1 to 10 bar are used. The midpoint deflection, circumferential, radial, and thickness strains are measured and using these, the Von Mises strain is also calculated. The experimental results are compared with the numerical values obtained using finite element analysis. The experimental results match well with the numerical values. The plastic hinge effect was also observed in the finite element simulations. Analysis of the failed specimens shows that aluminium plates had mode I failure, whereas copper plates had mode II failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the temperature evolution of coherently excited acoustic and optical phonon dynamics in the superconducting iron pnictide single crystal Ca(Fe0.944Co0.056)(2)As-2 across the spin density wave transition at T-SDW similar to 85 K and the superconducting transition at T-SC similar to 20 K. The strain pulse propagation model applied to the generation of the acoustic phonons yields the temperature dependence of the optical constants, and longitudinal and transverse sound velocities in the temperature range from 3.1 K to 300 K. The frequency and dephasing times of the phonons show anomalous temperature dependence below T-SC indicating a coupling of these low-energy excitations with the Cooper-pair quasiparticles. A maximum in the amplitude of the acoustic modes at T similar to 170 is seen, attributed to spin fluctuations and strong spin-lattice coupling before T-SDW. Copyright (c) EPLA, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation dynamics of metal foils (<0.25 mm thick) subjected to micro-blast wave are presented in this paper. The energy of micro-blast wave emanating from the open end of a polymer tube is used to deliver micro-particles for bio-medical applications. In these experiments metal foils are used to transfer the energy of the micro-blast wave to the micro-particles. Using cubic root scaling law the over pressure of the blast wave at the open end of the polymer tube is estimated and using this peak plate over pressure is estimated. The finite element analysis is used to estimate the velocity profile of the deforming metal foils. The finite element analysis results are compared with experimental results for the maximum deformation and deformed shape. Based on the deformation velocity, metal foil to be used for experiments is selected. Among the materials investigated 0.1 mm thick brass foil has the maximum velocity of 205 m/s and is used in the experiments. It is found from finite element analysis that the particles deposited within a radius of 0.5 mm will leave the foil with nearly equal velocity (error < 5%). The spray cone angle which is the angle of deviation of the path of particles from the axis of the polymer tube is also estimated and found to be less than 7 degrees up to a radius of 0.75 mm. Illustrative experiments are carried out to deliver micro particles (0.7 mu m diameter tungsten) into plant tissues. Particle penetration depth up to 460 mu m was achieved in ground tissue of potato tuber. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach for Optical Beam steering using 1-D linear arrays of curved wave guides as delay line. The basic structure for generating delay is the curved/bent waveguide and hence its Analytical modelling involves evaluation of mode profiles, propagation constants and losses become important. This was done by solving the dispersion equation of a bent waveguide with specific refractive index profiles. The phase shifts due to S-bends are obtained and results are compared with theoretical values. Simulations in 2-D are done using BPM and Matlab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gene is a unit of heredity in a living organism. It normally resides on a stretch of DNA that codes for a type of protein or for an RNA chain that has a function in the organism. All living things depend on genes, as they specify all proteins and functional RNA chains. Genes hold the information to build and maintain an organism’s cells and pass genetic traits to offspring. The gene has to be transferred to bacteria or eukaryotic cells for basic and applied molecular biology studies. Bacteria can uptake exogenous genetic material by three ways: conjugation, transduction and transformation. Genetic material is naturally transferred to bacteria in case of conjugation and transferred through bacteriophage in transduction. Transformation is the acquisition of exogenous genetic material through cell wall. The ability of bacteria of being transformed is called competency and those bacteria which have competency are competent cells. Divalent Calcium ions can make the bacteria competent and a heat shock can cause the bacteria to uptake DNA. But the heat shock method cannot be used for all the bacteria. In electroporation, a brief electric shock with an electric field of 10-20kV/cmmakes pores in the cell wall, facilitates the DNA to enter into the bacteria. Microprecipitates, microinjection, liposomes, and biological vectors are also used to transfer polar molecules like DNA into host cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element formulation are developed both for coupled and uncoupled problems. The developed elements are very similar to conventional elements in that they are based on the standard Galerkin variational formulation and use standard Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope formulations and their extensions, the developed elements can be used in the immediate vicinity of the radiator/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key points center dot Active calcium signal propagation occurs when an initial calcium trigger elicits calcium release through endoplasmic reticulum (ER) receptors. A high concentration of the calcium trigger in thin-calibre dendrites would suppress release of calcium through hippocampal inositol trisphosphate receptors (InsP3Rs). center dot Could the high-density expression of A-type K+ channels in thin-calibre dendrites be a mechanism for inhibiting this suppression, thereby restoring the utility of the ER as a substrate for active calcium propagation? center dot Quantitative analyses involving experimentally constrained models reveal a bell-shaped dependence of calcium released through InsP3Rs on the A-type K+ channel density, during the propagation of a calcium wave. center dot A-type K+ channels regulated the relative contribution of ER calcium to the induction of synaptic plasticity in the presence of model metabotropic glutamate receptors. center dot These results identify a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-calibre dendrites. Abstract The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-based models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density ofA-type potassium channels, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendritic diameter and that wave initiation occurred at branch points as a consequence of a high surface area to volume ratio of oblique dendrites. Furthermore, analogous to the role ofA-type potassium channels in regulating spike latency, we found that an increase in the density ofA-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (mGluR) signalling components and a calcium-controlled plasticity rule into our model and demonstrate thatthe presence of mGluRs induced a leftward shift in a BienenstockCooperMunro-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. Our results establish a novel form of interaction between active dendrites and the ER membrane, uncovering a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling microdomains through changes in dendritic excitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report ultrafast quasiparticle (QP) dynamics and coherent acoustic phonons in undoped CaFe2As2 iron pnictide single crystals exhibiting spin-density wave (SDW) and concurrent structural phase transition at temperature T-SDW similar to 165K using femtosecond time-resolved pump-probe spectroscopy. The contributions in transient differential reflectivity arising from exponentially decaying QP relaxation and oscillatory coherent acoustic phonon mode show large variations in the vicinity of T-SDW. From the temperature-dependence of the QP recombination dynamics in the SDW phase, we evaluate a BCS-like temperature dependent charge gap with its zero-temperature value of similar to(1.6 perpendicular to 0.2)k(B)T(SDW), whereas, much above T-SDW, an electron-phonon coupling constant of similar to 0.13 has been estimated from the linear temperature-dependence of the QP relaxation time. The long-wavelength coherent acoustic phonons with typical time-period of similar to 100 ps have been analyzed in the light of propagating strain pulse model providing important results for the optical constants, sounds velocity and the elastic modulus of the crystal in the whole temperature range of 3 to 300 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scenic word images undergo degradations due to motion blur, uneven illumination, shadows and defocussing, which lead to difficulty in segmentation. As a result, the recognition results reported on the scenic word image datasets of ICDAR have been low. We introduce a novel technique, where we choose the middle row of the image as a sub-image and segment it first. Then, the labels from this segmented sub-image are used to propagate labels to other pixels in the image. This approach, which is unique and distinct from the existing methods, results in improved segmentation. Bayesian classification and Max-flow methods have been independently used for label propagation. This midline based approach limits the impact of degradations that happens to the image. The segmented text image is recognized using the trial version of Omnipage OCR. We have tested our method on ICDAR 2003 and ICDAR 2011 datasets. Our word recognition results of 64.5% and 71.6% are better than those of methods in the literature and also methods that competed in the Robust reading competition. Our method makes an implicit assumption that degradation is not present in the middle row.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed-form expressions for the propagation characteristics of coupled microstrip lines with a symmetrical aperture in the ground plane are derived. Expressions for the regular microstrip coupled lines have been modified using physical insights to incorporate the effect of the aperture. The accuracy of these expressions has been verified by full-wave simulations and compared with conformal mapping analysis. These expressions are accurate within 5% for a substrate whose thickness varies from 0.2 to 1.6mm and permittivity in the range of 210. Designing a broadband filter based on planar multi-conductor coupled lines with aperture in the ground plane is demonstrated in this paper using the proposed expressions for its practical use.