944 resultados para Waste water treatment plants
Resumo:
Prototypes A (bidin + broken stones + gravel stones + gross sand + activated coal) and B (bidin + broken stones + gravel stones + gross sand) under hydraulic charge of 35 cm presented outlets that, when extrapolated for larger filters, are sufficient to supply small and medium irrigation projects for vegetables and fruits. (bidin = Rhodia polyester for drainage). Under a charge of 35 cm, filtrate of both prototypes presented a reduction of fecal coliforms, being this reduction higher for A prototypes, but, even in this case, the coliform quantities were superior to the legal limit. Under a decrease of the biochemical oxygen demand an increase of the available oxygen rate; pH and hardness did not present significant changes.
Resumo:
The problems caused by the residual effluents of wine distilleries for alcohol production are well known. The effluent effects in soil and groundwater are being researched in an area with sugar cane culture which receives, yearly, vinasse by dispersion. Samples are being collected from the soil, the groundwater and the existing creeks in the area. Four sub-areas are being monitored separately with a vinasse application of 300 m 3/ha year. Experimentation periods in each area have been 0, 5, 10 and 15 years. In the unsaturated zone, samples are being collected at depths of 25, 75 and 150 cm. The chemical analyses include macro and micro nutrients, organic matter and pH. Physical analyses give the soil water retention, hydraulic conductivity and soil particle distribution. These measurements permit the evaluation of nitrogen absorption and fertility changes of the soil. A tendency for the maintenance of soil fertility can be observed but with an elevation of nitrate concentration in groundwater.
Resumo:
Cassava is a widely grown root crop which accumulates two cyanogenic glucosides, linamarin and lotaustralin. Linamarin accounts for more than 80% of the cassava cyanogenic glucosides. It is a β-glucoside of acetone cyanohydrin and ethyl-methyl-ketone-cyanohydrin. Linamarin β-linkage can only be broken under high pressure, high temperature and use of mineral acids, while its enzymatic break occurs easily. Linamarase, an endogenous cassava enzyme, can break this β-linkage. The enzymatic reaction occurs under optimum conditions at 25°C, at pH 5.5 to 6.0. Linamarin is present in all parts of the cassava plant, being more concentrated on the root and leaves. If the enzyme and substrate are joined, a good detoxification can occur. All the cassava plant species are known to contain cyanide. Toxicity caused by free cyanide (CN-) has already been reported, while toxicity caused by glucoside has not. The lethal dose of CN- is 1 mg/kg of live weight; hence, cassava root classification into toxic and non-toxic depending on the amount of cyanide in the root. Should the cyanide content be high enough to exceed such a dose, the root is regarded as toxic. Values from 15 to 400 ppm (mg CN-/kg of fresh weight) of hydrocyanic acid in cassava roots have been mentioned in the literature. However, more frequent values in the interval 30 to 150 ppm have been observed. Processed cassava food consumed in Brazil is safe in regard to cyanide toxicity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The photo-Fenton process using potassium ferrioxalate as a mediator in the photodegradation reaction of organochloride compounds in an aqueous medium was investigated. The influence of parameters such as hydrogen peroxide and ferrioxalate concentrations and initial pH, was evaluated using dichloroacetic acid (DCA) as a model compound under black-light lamp irradiation. An upflow annular photoreactor, operating in a single pass or recirculating mode was used during photodegradation experiments with artificial light. The extent of the release of chloride ions was used to evaluate the photodegradation reaction. The optimum pH range observed was 2.5-2.8. The efficiency of DCA dechlorination increased with increasing concentrations of H2O2 and potassium ferrioxalate, reaching a plateau after the addition of 6 and 1.5 mmol/L of those reagents, respectively. The total organic carbon (TOC) content in DCA and 2,4-dichlorophenol (DCP) solutions was compared with the chloride released after photodegradation. The influence of natural solar light intensity, measured at 365 nm, was evaluated for the dechlorination of DCA on typical summer's days showing a linear dependency. The photodegradation of DCA using black-light lamp and solar irradiation was compared.
Resumo:
The photo-Fenton process using potassium ferrioxalate as a mediator was investigated for the photodegradation of dichloracetic acid (DCA) and 2,4-dichlorophenol (DCP) in aqueous medium using solar light as source of irradiation. The influence of the solution depth, the light intensity and the effect of stirring the solution during irradiation process were evaluated using DCA as a model compound. A negligible influence of stirring the solution was observed when the concentration of ferrioxalate (FeOx) was 0.8 mM and solution depth was 4.5 or 14 cm. The optimum FeOx concentration determined for solution depths between 4.5 and 14 cm was 0.8 mM considering total organic carbon (TOC) removal during DCA irradiation. The high efficiency of the photo-Fenton process was demonstrated on summer days, when only 10 min of exposition (around noon) were sufficient to completely destroy the organic carbon of a 1.0 mM DCA solution in the presence of 0.8 mM FeOx and 6.0 mM H2O2 using a solution depth of 4.5 cm. It was observed that the photodegradation efficiency increases linearly with the solar light intensity up to values around 15 Wm-2 but this linear relationship does not hold above this value showing a square root dependence. The photodegradation of a solution of DCP/FeOx showed a lower TOC removal rate than that observed for DCA/FeOx, achieving ∼90% after 35 min irradiation under 19 Wm-2, while under this light intensity, the same TOC removal of DCA/FeOx was achieved in only 10 min irradiation. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.
Resumo:
In this study, the photoelectrocatalytic behavior of bromide and generation of bromine using TiO2 was investigated in the separate anode and cathode reaction chambers. Our results show that the generation of bromine begins around a flatband potential of -0.34 V vs. standard calomel electrode (SCE) at pH 3.0 under UV illumination and increases with an increase in positive potential, finally reaching a steady-state concentration at 1.0 V vs. SCE. Maximum bromine formation occurs over the range of pH 4-6, decreasing sharply at conditions where the pH > 7. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
It may be difficult for small and medium cities to obtain information about the fluoride content of public water, because of the lack of equipments and technicians. This study aimed to analyze the fluoride levels of the water supplied by the public treatment stations of 40 cities situated in the northwest region of São Paulo State, during a period of 6 months, to verify if fluoridation occurs in a continuous manner and if the fluoride levels are within the recommended. Maps of the water distribution system were obtained from the water treatment companies and utilized to randomize the addresses of the collection sites, so that they included all regions with treated water sources. One water sample by month was collected and analyzed in duplicate using an ion-specific-electrode. Samples with 0.6 to 0.8 mgF/L were considered acceptable. In the 38 cities that regularly provided the samples in the 6 months of the study, water from 144 collection sites was collected and a total of 864 samples were analyzed, of which 61.81 percent were classified as unacceptable. It was observed that 33 cities performed fluoridation but in 78.79 percent of these cities there were variations in the fluoride level among the sites and in the same site during the period of study. One can conclude that most of these cities do not control the fluoride levels in the public water, since fluoridation occurs in a discontinuous manner and in most of the situations not within the recommended concentrations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
One indirect approach to predict the disinfection by-product (DBP) formation potential for a given water source is by evaluation of the kinetic behavior of free chlorine in the liquid phase and chlorine demand determination for different operation conditions of the chlorination process. The objective of this work was to evaluate the kinetic behavior of free chlorine in water or a number of different raw water sources, as well as to investigate the impact of the coagulation process on chlorine demand reduction and DBP formation. It was observed that the higher the total organic carbon (TOC) removal efficiency through coagulation, the lower the liquid phase chlorine demand. Regarding trihalomethane (THM) formation, a ratio of 28 ug/L formed per mg/L of applied chlorine was observed for the waters employed in the experimental investigation.
Resumo:
This work introduces an innovative urinal for public convenience, that promotes at the same time water reuse and personal higiene, in a safe and economical way . Furthermore it demonstrates the latest technology and its technical and economical viabillity of utilization in new and already existing buildings facilities. This new model of personal higiene equipment offers as main benefits the improved economy with subsequent decrease in drinkable water consumption, sanitary safety, low cost and easy installation due to its simplicity and to the fact that it can be installed in already existing facilities. The proposal is constituted by a higienic, ecological and smart system for flushing of public urinals. It is a conjugated system of lavatory and urinal that reuses hands higienization water from the lavatory for flushing purpose. The proposed urinal can be operated manually or automatically by means of a presential sensor. The system promotes drinkable water economy by a rational utilization by avoiding the use of waste water from hand washing in place of clean water for flushing. The proposed equipment increases the economy of clean water in a simple and economical way and it can be installed in any type of public lavatory facilitie such as schools, public buildings, hospitals, commercial buildings, bus terminals, airports, stadiums, parking buildings and shopping centers. Additional benefits of the proposed system is the suggestion of hands washing before and after the use of the urinal without contamination risks from focet handling.and render more attractive the installation for a rational use of clean water in commercial and industrial buildings. Pay-back has shown to be very attractive for a number of internal return rates and also very attractive from the point of view of environmental protection.
Resumo:
This paper aimed to determine the flow rate of drippers, their flow rate-pressure curve, their equation, their flow rate variation coefficient (VCq), as well as to evaluate the uniformity of water application of the Netafim drip pipe, Tiran 17 model, used for irrigation with domestic wastewater from treated household drain. After 1000 working hours, the blockage of some drippers decreased the uniformity of water application from 98% to lower than 60% and increased the flow variation coefficient to values higher than 0.29.
Resumo:
This research aimed at studying the oxidation process, to verify the effectiveness of coliform inactivation and to evaluate the formation of ozonation disinfection byproducts (DBP) in anoxic sanitary wastewater treated with ozone/hydrogen peroxide applied at doses of 2.6 mg O3 L-1 and 2.0 mg H2O2 L-1 with contact time of 10 min and 8.1 mg O3 L-1 and 8.0 mg H2O2 L-1 with contact time of 20 min. The mean chemical oxygen demand (COD) reductions were 7.50 and 9.40% for applied dosages of 2.5-2.8 and 6.4-9.4 mg O3 L-1 + 2.0 and 8.0 mg H2O2.L-1, respectively. The Escherichia coli (E. coli) inactivation range was 2.98-4.04 log10 and the total coliform inactivation range was 2.77-4.01 log10. The aldehydes investigated were formaldehyde, acetaldehyde, glyoxal and methylglyoxal. It was observed only the formation of acetaldehyde that ranged 5.53 to 29.68 μg L-1.
Resumo:
Abstract The final disposal of residues generated at sewage treatment plants (STPs) has become a major problem for cities, due to the increase in the amount of treated sewage. One of the alternatives for the residue, labeled sewage sludge, is its reuse in agriculture and in degraded soil. However, not all pathogens and metals present in it are eliminated during treatment. Diplopods have been used as bioindicators in ecotoxicological tests as they are constantly in close contact with the soil. Owing to this fact, the purpose of this study was to expose specimens of the diplopod Rhinocricus padbergi to substrate containing sewage sludge collected at STPs to analyze morphological alterations in their parietal and perivisceral fat body, where substances are stored. The exposures were held for 7, 15, or 90 days at different concentrations of sewage sludge (control, 1%, 10%, and 50%). The parietal fat body showed no alterations in any of the three exposure periods or concentrations. Alterations in the perivisceral fat body were observed for all exposure periods. According to the results, we suggest that the sludge used has toxic agents responsible for changing the animal's perivisceral fat body. © 2012 Microscopy Society of America.