991 resultados para Vortex Method
Resumo:
In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.
Resumo:
By using the method of characteristics, the bearing capacity factor N-gamma was computed for a rough strip footing. The analysis was performed by considering a curved nonplastic wedge under the foundation base bounded by curved slip lines being tangential to the base of the footing at its either edge and inclined at an angle pi/4 - phi/2 with the vertical axis of symmetry. The existing theories in the literature for rough footings, which usually employ a triangular wedge below the footing base, were generally found to provide greater values of N-gamma as compared with the results obtained in this contribution.
Resumo:
A wet chemical route is developed for the preparation of Sr2CeO4 denoted the carbonate-gel composite technique. This involves the coprecipitation of strontium as fine particles of carbonates within hydrated gels of ceria (CeO2.xH(2)O, 40
Resumo:
The infrared spectra of the matrix isolated species of N-methylformamide (NMF) and N-methylacetamide (NMA) and their N-deuterated molecules have been simulated by the extended molecular mechanics method using an empirical force field which includes charges and charge fluxes as coulombic potential parameters. The structural parameters and dipole. moments of NMF and NMA have. also been computed in satisfactory agreement with the experiment. Good agreement between experimental and calculated vibrational frequencies and infrared absorption band intensities for NMF and NMA and their deuterated molecules has been obtained. The vibrational assignments of NMF and NMA are-discussed taking also into account the infrared absorption intensities.
Resumo:
Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1-xMnO3 (X=0.0-0.18) compositions. Powders annealed in oxygen/air at 1000-1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173-1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm(-1) at 298 K to 105 S cm(-1) at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0X10(-6) S cm(-1) at 700 K to 2.0X10(-3) S cm(-1) at 1273 K. The ionic transference number of these compositions ranges from 3.0X10(-5) to 5.0X10(-5) at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03-1.10 and 0.80-1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Metal stencils are well known in electronics printing application such as for dispensing solder paste for surface mounting, printing embedded passive elements in multilayer structures, etc. For microprinting applications using stencils, the print quality depends on the smoothness of the stencil aperture and its dimensional accuracy, which in turn are invariably related to the method used to manufacture the stencils. In this paper, fabrication of metal stencils using a photo-defined electrically assisted etching method is described. Apertures in the stencil were made in neutral electrolyte using three different types of impressed current, namely, dc, pulsed dc, and periodic pulse reverse (PPR). Dimensional accuracy and wall smoothness of the etched apertures in each of the current waveforms were compared. Finally, paste transfer efficiency of the stencil obtained using PPR was calculated and compared with those of a laser-cut electropolished stencil. It is observed that the stencil fabricated using current in PPR waveform has better dimensional accuracy and aperture wall smoothness than those obtained with dc and pulsed dc. From the paste transfer efficiency experiment, it is concluded that photo-defined electrically assisted etching method can provide an alternate route for fabrication of metal stencils for future microelectronics printing applications.
Resumo:
Current-voltage (I-V) characteristics of quench condensed, superconducting, ultrathin Bi films in a magnetic field are reported. These I-V's show hysteresis for all films, grown both with and without thin Ge underlayers. Films on Ge underlayers, close to superconductor-insulator transition, show a peak in the critical current, indicating a structural transformation of the vortex solid. These underlayers, used to make the films more homogeneous, are found to be more effective in pinning the vortices. The upper critical fields (B-c2) of these films are determined from the resistive transitions in perpendicular magnetic field. The temperature dependence of the upper critical field is found to differ significantly from Ginzburg-Landau theory, after modifications for disorder.
Resumo:
The Brittle-to-ductile-transition-temperature (BDTT) of free-standing Pt-aluminide (PtAl) coating specimens, i.e. stand-alone coating specimens without any substrate, was determined by micro-tensile testing technique. The effect of Pt content, expressed in terms of the thickness of initial electro-deposited Pt layer, on the BDTT of the coating has been evaluated and an empirical correlation drawn. Increase in the electrodeposited Pt layer thickness from nil to 10 mu m was found to cause an increase in the BDTT of the coating by about 100 degrees C.