919 resultados para Visualization Using Computer Algebra Tools
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
Recent advances in the control of molecular engineering architectures have allowed unprecedented ability of molecular recognition in biosensing, with a promising impact for clinical diagnosis and environment control. The availability of large amounts of data from electrical, optical, or electrochemical measurements requires, however, sophisticated data treatment in order to optimize sensing performance. In this study, we show how an information visualization system based on projections, referred to as Projection Explorer (PEx), can be used to achieve high performance for biosensors made with nanostructured films containing immobilized antigens. As a proof of concept, various visualizations were obtained with impedance spectroscopy data from an array of sensors whose electrical response could be specific toward a given antibody (analyte) owing to molecular recognition processes. In addition to discussing the distinct methods for projection and normalization of the data, we demonstrate that an excellent distinction can be made between real samples tested positive for Chagas disease and Leishmaniasis, which could not be achieved with conventional statistical methods. Such high performance probably arose from the possibility of treating the data in the whole frequency range. Through a systematic analysis, it was inferred that Sammon`s mapping with standardization to normalize the data gives the best results, where distinction could be made of blood serum samples containing 10(-7) mg/mL of the antibody. The method inherent in PEx and the procedures for analyzing the impedance data are entirely generic and can be extended to optimize any type of sensor or biosensor.
Resumo:
The image reconstruction using the EIT (Electrical Impedance Tomography) technique is a nonlinear and ill-posed inverse problem which demands a powerful direct or iterative method. A typical approach for solving the problem is to minimize an error functional using an iterative method. In this case, an initial solution close enough to the global minimum is mandatory to ensure the convergence to the correct minimum in an appropriate time interval. The aim of this paper is to present a new, simple and low cost technique (quadrant-searching) to reduce the search space and consequently to obtain an initial solution of the inverse problem of EIT. This technique calculates the error functional for four different contrast distributions placing a large prospective inclusion in the four quadrants of the domain. Comparing the four values of the error functional it is possible to get conclusions about the internal electric contrast. For this purpose, initially we performed tests to assess the accuracy of the BEM (Boundary Element Method) when applied to the direct problem of the EIT and to verify the behavior of error functional surface in the search space. Finally, numerical tests have been performed to verify the new technique.
Resumo:
With the purpose of approximating two issues, oral narrative and constructive memory, we assume that children, as well as adults, have a constructive memory. Accordingly, researchers of the constructive memory share with piagetians the vision that memory is an applied cognition. Under this perspective, understanding and coding into memory constitute a process which is considered similar to the piagetian assimilation of building an internal conceptual representation of the information (hence the term constructive memory. The objective of this study is to examine and illustrate, through examples drawn from a research about oral narrative with 5, 8 and 10 years old children, the extent to which the constructive memory is stimulated by the acquisition of the structures of knowledge or ""mental models"" (schemes of stories and scenes, scripts), and if they automatically employ them to process constructively the information in storage and rebuild them in the recovery. A sequence of five pictures from a book without text was transformed into computerized program, and the pictures were thus presented to the children. The story focuses on a misunderstanding of two characters on a different assessment about a key event. In data collection, the demands of memory were preserved, since children narrate their stories when the images were no longer viewed on the computer screen. Each narrative was produced as a monologue. The results show that this story can be told either in a descriptive level or in a more elaborated level, where intentions and beliefs are attributed to the characters. Although this study allows an assessment of the development of children`s capabilities (both cognitive and linguistic) to narrate a story, there are for sure other issues that could be exploited.