937 resultados para Varshamov-Tennengolts Codes
Resumo:
The security and reliability of a class of public-key cryptosystems against attacks by unauthorized parties, who had acquired partial knowledge of one or more of the private key components and/or of the message, were discussed. The standard statistical mechanical methods of dealing with diluted spin systems with replica symmetric considerations were analyzed. The dynamical transition which defined decryption success in practical situation was studied. The phase diagrams which showed the dynamical threshold as a function of the partial acquired knowledge of the private key were also presented.
Resumo:
We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.
Resumo:
In this thesis we use statistical physics techniques to study the typical performance of four families of error-correcting codes based on very sparse linear transformations: Sourlas codes, Gallager codes, MacKay-Neal codes and Kanter-Saad codes. We map the decoding problem onto an Ising spin system with many-spins interactions. We then employ the replica method to calculate averages over the quenched disorder represented by the code constructions, the arbitrary messages and the random noise vectors. We find, as the noise level increases, a phase transition between successful decoding and failure phases. This phase transition coincides with upper bounds derived in the information theory literature in most of the cases. We connect the practical decoding algorithm known as probability propagation with the task of finding local minima of the related Bethe free-energy. We show that the practical decoding thresholds correspond to noise levels where suboptimal minima of the free-energy emerge. Simulations of practical decoding scenarios using probability propagation agree with theoretical predictions of the replica symmetric theory. The typical performance predicted by the thermodynamic phase transitions is shown to be attainable in computation times that grow exponentially with the system size. We use the insights obtained to design a method to calculate the performance and optimise parameters of the high performance codes proposed by Kanter and Saad.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We have investigated how optimal coding for neural systems changes with the time available for decoding. Optimization was in terms of maximizing information transmission. We have estimated the parameters for Poisson neurons that optimize Shannon transinformation with the assumption of rate coding. We observed a hierarchy of phase transitions from binary coding, for small decoding times, toward discrete (M-ary) coding with two, three and more quantization levels for larger decoding times. We postulate that the presence of subpopulations with specific neural characteristics could be a signiture of an optimal population coding scheme and we use the mammalian auditory system as an example.
Resumo:
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models.
Resumo:
Focal points: ICD-10 codings and spontaneous yellow card reports for warfarin toxicity were compared retrospectively over a one-year period Eighteen cases of ICD-10 coded warfarin toxicity were identified from a total of 55,811 coded episodes More than three times as many ADRs to warfarin were found by screening ICD-10 codes as were reported spontaneously using the yellow card scheme Valuable information is being lost to regulatory authorities and as recognised reporters to the yellow card scheme, pharmacists are well placed to report these ADRs, enhancing their role in the safe and appropriate prescribing of warfarin
Resumo:
In this work, we determine the coset weight spectra of all binary cyclic codes of lengths up to 33, ternary cyclic and negacyclic codes of lengths up to 20 and of some binary linear codes of lengths up to 33 which are distance-optimal, by using some of the algebraic properties of the codes and a computer assisted search. Having these weight spectra the monotony of the function of the undetected error probability after t-error correction P(t)ue (C,p) could be checked with any precision for a linear time. We have used a programm written in Maple to check the monotony of P(t)ue (C,p) for the investigated codes for a finite set of points of p € [0, p/(q-1)] and in this way to determine which of them are not proper.
Resumo:
In 2002, van der Geer and van der Vlugt gave explicit equations for an asymptotically good tower of curves over the field F8. In this paper, we will present a method for constructing Goppa codes from these curves as well as explicit constructions for the third level of the tower. The approach is to find an associated plane curve for each curve in the tower and then to use the algorithms of Haché and Le Brigand to find the corresponding Goppa codes.
Resumo:
* The author is supported by a Return Fellowship from the Alexander von Humboldt Foundation.
Resumo:
*Partially supported by NATO.
Resumo:
* Supported by COMBSTRU Research Training Network HPRN-CT-2002-00278 and the Bulgarian National Science Foundation under Grant MM-1304/03.