919 resultados para VLE data sets
Resumo:
In order to reduce the motion artifacts in DSA, non-rigid image registration is commonly used before subtracting the mask from the contrast image. Since DSA registration requires a set of spatially non-uniform control points, a conventional MRF model is not very efficient. In this paper, we introduce the concept of pivotal and non-pivotal control points to address this, and propose a non-uniform MRF for DSA registration. We use quad-trees in a novel way to generate the non-uniform grid of control points. Our MRF formulation produces a smooth displacement field and therefore results in better artifact reduction than that of registering the control points independently. We achieve improved computational performance using pivotal control points without compromising on the artifact reduction. We have tested our approach using several clinical data sets, and have presented the results of quantitative analysis, clinical assessment and performance improvement on a GPU. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Motivated by the observation that communities in real world social networks form due to actions of rational individuals in networks, we propose a novel game theory inspired algorithm to determine communities in networks. The algorithm is decentralized and only uses local information at each node. We show the efficacy of the proposed algorithm through extensive experimentation on several real world social network data sets.
Resumo:
We consider the problem of developing privacy-preserving machine learning algorithms in a dis-tributed multiparty setting. Here different parties own different parts of a data set, and the goal is to learn a classifier from the entire data set with-out any party revealing any information about the individual data points it owns. Pathak et al [7]recently proposed a solution to this problem in which each party learns a local classifier from its own data, and a third party then aggregates these classifiers in a privacy-preserving manner using a cryptographic scheme. The generaliza-tion performance of their algorithm is sensitive to the number of parties and the relative frac-tions of data owned by the different parties. In this paper, we describe a new differentially pri-vate algorithm for the multiparty setting that uses a stochastic gradient descent based procedure to directly optimize the overall multiparty ob-jective rather than combining classifiers learned from optimizing local objectives. The algorithm achieves a slightly weaker form of differential privacy than that of [7], but provides improved generalization guarantees that do not depend on the number of parties or the relative sizes of the individual data sets. Experimental results corrob-orate our theoretical findings.
Resumo:
This paper proposes a novel approach to solve the ordinal regression problem using Gaussian processes. The proposed approach, probabilistic least squares ordinal regression (PLSOR), obtains the probability distribution over ordinal labels using a particular likelihood function. It performs model selection (hyperparameter optimization) using the leave-one-out cross-validation (LOO-CV) technique. PLSOR has conceptual simplicity and ease of implementation of least squares approach. Unlike the existing Gaussian process ordinal regression (GPOR) approaches, PLSOR does not use any approximation techniques for inference. We compare the proposed approach with the state-of-the-art GPOR approaches on some synthetic and benchmark data sets. Experimental results show the competitiveness of the proposed approach.