928 resultados para Uterus -- Physiology
Resumo:
The purpose of the present study was to examine the influence of 3 different high-intensity interval training regimens on the first and second ventilatory thresholds (VT1 and VT2), anaerobic capacity (ANC), and plasma volume (PV) in well-trained endurance cyclists. Before and after 2 and 4 weeks of training, 38 well-trained cyclists (VO2peak = 64.5 +/- 5.2 ml[middle dot]kg-1[middle dot]min-1) performed (a) a progressive cycle test to measure VO2peak, peak power output (PPO), VT1, and VT2; (b) a time to exhaustion test (Tmax) at their VO2peak power output (Pmax); and (c) a 40-km time-trial (TT40). Subjects were assigned to 1 of 4 training groups (group 1: n = 8, 8 3 60% Tmax at Pmax, 1:2 work-recovery ratio; group 2: n = 9, 8 x 60% Tmax at Pmax, recovery at 65% maximum heart rate; group 3: n = 10, 12 x 30 seconds at 175% PPO, 4.5-minute recovery; control group: n = 11). The TT40 performance, VO2peak, VT1,VT2, and ANC were all significantly increased in groups 1, 2, and 3 (p < 0.05) but not in the control group. However, PV did not change in response to the 4-week training program. Changes in TT40 performance were modestly related to the changes in VO2peak, VT1, VT2, and ANC (r = 0.41, 0.34, 0.42, and 0.40, respectively; all p < 0.05). In conclusion, the improvements in TT40 performance were related to significant increases in VO2peak, VT1,VT2, and ANC but were not accompanied by significant changes in PV. Thus, peripheral adaptations rather than central adaptations are likely responsible for the improved performances witnessed in well-trained endurance athletes following various forms of high-intensity interval training programs.
Resumo:
Introduction: Unaccustomed eccentric exercise often results in muscle damage and neutrophil activation. We examined changes in plasma cytokines stress hormones, creatine kinase activity and myoglobin concentration, neutrophil surface receptor expression, degranulation, and the capacity of neutrophils to generate reactive oxygen species in response to in vitro stimulation after downhill running. Methods: Ten well-trained male runners ran downhill on a treadmill at a gradient of -10% for 45 min at 60% V̇O2max. Blood was sampled immediately before (PRE) and after (POST), 1 h (1 h POST), and 24 h (24 h POST) after exercise. Results: At POST, there were significant increases (P < 0.01) in neutrophil count (32%), plasma interleukin (IL)-6 concentration (460%), myoglobin (Mb) concentration (1100%), and creatine kinase (CK) activity (40%). At 1 h POST, there were further increases above preexercise values for neutrophil count (85%), plasma Mb levels (1800%), and CK activity (56%), and plasma IL-6 concentration remained above preexercise values (410%) (P < 0.01). At 24 h POST, neutrophil counts and plasma IL-6 levels had returned to baseline, whereas plasma Mb concentration (100%) and CK activity (420%) were elevated above preexercise values (P < 0.01). There were no significant changes in neutrophil receptor expression, degranulation and respiratory burst activity, and plasma IL-8 and granulocyte-colony stimulating factor concentrations at any time after exercise. Neutrophil count correlated with plasma Mb concentration at POST (r = 0.64, P < 0.05), and with plasma CK activity at POST (r = 0.83, P < 0.01) and 1 h POST (r = 0.78, P < 0.01). Conclusion: Neutrophil activation remains unchanged after downhill running in well-trained runners, despite increases in plasma markers of muscle damage.
Resumo:
The present study examined the effect of carbohydrate supplementation on changes in neutrophil counts, and the plasma concentrations of cortisol and myoglobin after intense exercise. Eight well-trained male runners ran on a treadmill for 1 h at 85% maximal oxygen uptake on two separate occasions. In a double-blind cross-over design, subjects consumed either 750 ml of a 10% carbohydrate (CHO) drink or a placebo drink on each occasion. The order of the trials was counter-balanced. Blood was drawn immediately before and after exercise, and 1 h after exercise. Immediately after exercise, neutrophil counts (CHO, 49%; placebo, 65%; P<0.05), plasma concentrations of glucose (CHO, 43%; P<0.05), lactate (CHO, 130%; placebo, 130%; P<0.01), cortisol (CHO, 100%; placebo, 161%; P<0.01), myoglobin (CHO, 194%; placebo, 342%; P<0.01) all increased significantly. One hour post-exercise, plasma myoglobin concentration (CHO, 331%; placebo, 482%; P<0.01) and neutrophil count (CHO, 151%; placebo, 230% P<0.01) both increased further above baseline. CHO significantly attenuated plasma myoglobin concentration and the neutrophil count after exercise (P<0.01), but did not affect plasma cortisol concentration. The effects of CHO on plasma myoglobin concentration may be due to alterations in cytokine synthesis, insulin responses or myoglobin clearance rates from the bloodstream during exercise. Plasma cortisol responses to CHO during exercise may depend on the intensity of exercise, or the amount of CHO consumed. Lastly, cortisol appears to play a minor role in the mobilisation of neutrophils after intense exercise.
Resumo:
Neutrophils produce free radicals known as reactive oxygen species (ROS), which assist in the clearance of damaged host tissue. Tissue damage may occur during exercise due to muscle damage, thermal stress and ischaemia/reperfusion. When produced in excess, neutrophil-derived ROS may overwhelm the body's endogenous antioxidant defence mechanisms, and this can lead to oxidative stress. There is increasing evidence for links between oxidative stress and a variety of pathological disorders such as cardiovascular diseases, cancer, chronic inflammatory diseases and post-ischaemic organ injury. A small number of studies have investigated whether there is a link between neutrophil activation and oxidative stress during exercise. In this review, we have summarised the findings of these studies. Exercise promotes the release of neutrophils into the circulation, and some evidence suggests that neutrophils mobilised after exercise have an enhanced capacity to generate some forms of ROS when stimulated in vitro. Neutrophil activation during exercise may challenge endogenous antioxidant defence mechanisms, but does not appear to increase lipid markers of oxidative stress to any significant degree, at least in the circulation. Antioxidant supplements such as N-acetylcysteine are effective at attenuating increases in the capacity of neutrophils to generate ROS when stimulated in vitro, whereas vitamin E reduces tissue infiltration of neutrophils during exercise. Free radicals generated during intense exercise may lead to DNA damage in leukocytes, but it is unknown if this damage is the result of neutrophil activation. Exercise enhances the expression of inducible haem (heme)-oxygenase (HO-1) in neutrophils after exercise, however, it is uncertain whether oxidative stress is the stimulus for this response.
Resumo:
The aims of this study were to examine the plasma concentrations of inflammatory mediators including cytokines induced by a single bout of eccentric exercise and again 4 weeks later by a second bout of eccentric exercise of the same muscle group. Ten untrained male subjects performed two bouts of the eccentric exercise involving the elbow flexors (6 sets of 5 repetitions) separated by four weeks. Changes in muscle soreness, swelling, and function following exercise were compared between the bouts. Blood was sampled before, immediately after, 1 h, 3 h, 6 h, 24 h (1 d), 48 h (2 d), 72 h (3 d), 96 h (4 d) following exercise bout to measure plasma creatine kinase (CK) activity, plasma concentrations of myoglobin (Mb), interleukin (IL)-1beta, IL-1 receptor antagonist (IL-1ra), IL-4, IL-6, IL-8, IL-10, IL-12p40, tumor necrosis factor (TNF)-alpha, granulocyte colony-stimulating factor (G-CSF), myeloperoxidase (MPO), prostaglandin E2 (PGE2), heat shock protein (HSP) 60 and 70. After the first bout, muscle soreness increased significantly, and there was also significant increase in upper arm circumference; muscle function decreased and plasma CK activity and Mb concentration increased significantly. These changes were significantly smaller after the second bout compared to the first bout, indicating muscle adaptation to the repeated bouts of the eccentric exercise. Despite the evidence of greater muscle damage after the first bout, the changes in cytokines and other inflammatory mediators were quite minor, and considerably smaller than that following endurance exercise. These results suggest that eccentric exercise-induced muscle damage is not associated with the significant release of cytokines into the systemic circulation. After the first bout, plasma G-CSF concentration showed a small but significant increase, whereas TNF-alpha and IL-8 showed significant decreases compared to the pre-exercise values. After the second bout, there was a significant increase in IL-10, and a significant decrease in IL-8. In conclusion, although there was evidence of severe muscle damage after the eccentric exercise, this muscle damage was not accompanied by any large changes in plasma cytokine concentrations. The minor changes in systemic cytokine concentration found in this study might reflect more rapid clearance from the circulation, or a lack of any significant metabolic or oxidative demands during this particular mode of exercise. In relation to the adaptation to the muscle damage, the anti-inflammatory cytokine IL-10 might work as one of the underlying mechanisms of action.
Resumo:
Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.
Resumo:
Changes in plasma zinc concentration and markers of immune function were examined in a group of 10 male runners (n = 10) following a moderate increase in training over four weeks. Seven sedentary males acted as controls. Fasting blood samples were taken at rest, before (T0) and after (T4) four weeks of increased (+ 16 %) training and after two weeks of reduced (-31 %) training (T6). Blood was analysed for plasma zinc concentration, differential leucocyte counts, lymphocyte subpopulations and lymphocyte proliferation using incorporation of 3H-thymidine. The runners increased their training volume by 16 % over the four weeks. When compared with the nonathletes, the runners had lower concentrations of plasma zinc (p = 0.012), CD3 + (p = 0.042) and CD19 + lymphocytes (p = 0.010) over the four weeks. Lymphocyte proliferation in response to Concanavalin A stimulation was greater in the runners (p = 0.0090). Plasma zinc concentration and immune markers remained constant during the study. Plasma zinc concentration correlated with total leucocyte counts in the athletes at T6 (r = -0.72, p < 0.05) and with Pokeweed mitogen stimulation in the nonathletes at T6 (r = -0.92, p < 0.05). Therefore, athletes are unlikely to benefit from zinc supplementation during periods of moderately increased training volume.
Resumo:
Ascorbic acid or vitamin C is involved in a number of biochemical pathways that are important to exercise metabolism and the health of exercising individuals. This review reports the results of studies investigating the requirement for vitamin C with exercise on the basis of dietary vitamin C intakes, the response to supplementation and alterations in plasma, serum, and leukocyte ascorbic acid concentration following both acute exercise and regular training. The possible physiological significance of changes in ascorbic acid with exercise is also addressed. Exercise generally causes a transient increase in circulating ascorbic acid in the hours following exercise, but a decline below pre-exercise levels occurs in the days after prolonged exercise. These changes could be associated with increased exercise-induced oxidative stress. On the basis of alterations in the concentration of ascorbic acid within the blood, it remains unclear if regular exercise increases the metabolism of vitamin C. However, the similar dietary intakes and responses to supplementation between athletes and nonathletes suggest that regular exercise does not increase the requirement for vitamin C in athletes. Two novel hypotheses are put forward to explain recent findings of attenuated levels of cortisol postexercise following supplementation with high doses of vitamin C.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However, there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
PURPOSE: The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. METHODS: Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; VO(2peak) = 64.5 +/- 5.2 mL x kg(-1) min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption (VO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T(max)) at their VO(2peak) power output (P(max)), as well as 3) a 40-km time-trial (TT(40)). Subjects were matched and assigned to one of four training groups (G(2), N = 8, 8 x 60% T(max) at P(max), 1:2 work:recovery ratio; G(2), N = 9, 8 x 60% T(max) at P(max), recovery at 65% HR(max); G(3), N = 10, 12 x 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1), G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. RESULTS: All HIT groups improved TT(40) performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to +1.1%; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their VO(2peak) significantly more than G(CON) (+1.0%; P < 0.05). CONCLUSION: The present study has shown that when HIT incorporates P(max) as the interval intensity and 60% of T(max) as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.
Resumo:
Interaction between the endocrine and immune system is necessary to regulate our health. However, under some conditions, stress hormones can overstimulate or suppress the immune system, resulting in harmful consequences (1). Stress is often considered negative, yet it is an intrinsic part of everyday life. Stress is not clearly defined; it is context-specific and depends on the nature of factors that challenge our body. Internal stimuli will elicit different stress reactions compared with external stimuli (1). Similarly, some stressors will induce responses that may benefit survival, whereas others will cause disturbances that may endanger our health. Stress also depends on how our bodies perceive and respond to stressful stimuli (1).