966 resultados para Use Efficiency
Resumo:
The use of Diagnosis Related Groups (DRG) as a mechanism for hospital financing is a currently debated topic in Portugal. The DRG system was scheduled to be initiated by the Health Ministry of Portugal on January 1, 1990 as an instrument for the allocation of public hospital budgets funded by the National Health Service (NHS), and as a method of payment for other third party payers (e.g., Public Employees (ADSE), private insurers, etc.). Based on experience from other countries such as the United States, it was expected that implementation of this system would result in more efficient hospital resource utilisation and a more equitable distribution of hospital budgets. However, in order to minimise the potentially adverse financial impact on hospitals, the Portuguese Health Ministry decided to gradually phase in the use of the DRG system for budget allocation by using blended hospitalspecific and national DRG casemix rates. Since implementation in 1990, the percentage of each hospitals budget based on hospital specific costs was to decrease, while the percentage based on DRG casemix was to increase. This was scheduled to continue until 1995 when the plan called for allocating yearly budgets on a 50% national and 50% hospitalspecific cost basis. While all other nonNHS third party payers are currently paying based on DRGs, the adoption of DRG casemix as a National Health Service budget setting tool has been slower than anticipated. There is now some argument in both the political and academic communities as to the appropriateness of DRGs as a budget setting criterion as well as to their impact on hospital efficiency in Portugal. This paper uses a twostage procedure to assess the impact of actual DRG payment on the productivity (through its components, i.e., technological change and technical efficiency change) of diagnostic technology in Portuguese hospitals during the years 1992–1994, using both parametric and nonparametric frontier models. We find evidence that the DRG payment system does appear to have had a positive impact on productivity and technical efficiency of some commonly employed diagnostic technologies in Portugal during this time span.
Resumo:
The key to the use of polymersomes as effective molecular delivery systems is in the ability to design processing routes that can efficiently encapsulate the molecular payload. We have evaluated various surface rehydration mechanisms for encapsulation, in each case characterizing the morphologies formed using DLS and confocal microscopy as well as determining the encapsulation efficiency for the hydrophilic dye Rhodamine B. In contrast to bulk methods, where the encapsulation efficiencies are low, we find that higher efficiencies can be obtained by the rehydration of thin films. We relate these results to the non-equilibrium mechanisms that underlie vesicle formation and discuss how an understanding of these mechanisms can help optimize encapsulation efficiencies. Our conclusion is that, even considering the good encapsulation efficiency, surface methods are still unsuitable for the massive scale-up needed when applied to commercial mass market molecular delivery scenarios. However, targeting more specialized applications for high value ingredients (like pharmaceuticals) might be more feasible.
Resumo:
Compared to packings trays are more cost effective column internals because they create a large interfacial area for mass transfer by the interaction of the vapour on the liquid. The tray supports a mass of froth or spray which on most trays (including the most widely used sieve trays) is not in any way controlled. The two important results of the gas/liquid interaction are the tray efficiency and the tray throughput or capacity. After many years of practical experience, both may be predicted by empirical correlations, despite the lack of understanding. It is known that the tray efficiency is in part determined by the liquid flow pattern and the throughput by the liquid froth height which in turn depends on the liquid hold-up and vapour velocity. This thesis describes experimental work on sieve trays in an air-water simulator, 2.44 m in diameter. The liquid flow pattern, for flow rates similar to those used in commercial scale distillation, was observed experimentally by direct observation; by water-cooling, to simulate mass transfer; use of potassium permanganate dye to observe areas of longer residence time; and by height of clear liquid measurements across the tray and in the downcomer using manometers. This work presents experiments designed to evaluate flow control devices proposed to improve the gas liquid interaction and hence improve the tray efficiency and throughput. These are (a) the use of intermediate weirs to redirect liquid to the sides of the tray so as to remove slow moving/stagnant liquid and (b) the use of vapour-directing slots designed to use the vapour to cause liquid to be directed towards the outlet weir thus reducing the liquid hold-up at a given rate i.e. increased throughput. This method also has the advantage of removing slow moving/stagnant liquid. In the experiments using intermediate weirs, which were placed in the centre of the tray. it was found that in general the effect of an intermediate weir depends on the depth of liquid downstream of the weir. If the weir is deeper than the downstream depth it will cause the upstream liquid to be deeper than the downstream liquid. If the weir is not as deep as deep as the downstream depth it may have little or no effect on the upstream depth. An intermediate weir placed at an angle to the direction of flow of liquid increases the liquid towards the sides of the tray without causing an increase in liquid hold-up/ froth height. The maximum proportion of liquid caused to flow sideways by the weir is between 5% and 10%. Experimental work using vapour-directing slots on a rectangular sieve tray has shown that the horizontal momentum that is imparted to the liquid is dependent upon the size of the slot. If too much momentum is transferred to the liquid it causes hydraulic jumps to occur at the mouth of the slot coupled with liquid being entrained, The use of slots also helps to eliminate the hydraulic gradient across sieve trays and provides a more uniform froth height on the tray. By comparing the results obtained of the tray and point efficiencies, it is shown that a slotted tray reduces both values by approximately 10%. This reduction is due to the fact that with a slotted tray the liquid has a reduced residence time Ion the tray coupled also with the fact that large size bubbles are passing through the slots. The effectiveness of using vapour-directing slots on a full circular tray was investigated by using dye to completely colour the biphase. The removal of the dye by clear liquid entering the tray was monitored using an overhead camera. Results obtained show that the slots are successful in their aim of reducing slow moving liquid from the sides of the tray, The net effect of this is an increase in tray efficiency. Measurements of slot vapour-velocity found it to be approximately equal to the hole velocity.
Resumo:
Lead in petrol has been identified as a health hazard and attempts are being made to create a lead-free atmosphere. Through an intensive study a review is made of the various options available to the automobile and petroleum industry. The economic and atmospheric penalties coupled with automobile fuel consumption trends are calculated and presented in both graphical and tabulated form. Experimental measurements of carbon monoxide and hydrocarbon emissions are also presented for certain selected fuels. Reduction in CO and HC's with the employment of a three-way catalyst is also discussed. All tests were carried out on a Fiat 127A engine at wide open throttle and standard timing setting. A Froude dynamometer was used to vary engine speed. With the introduction of lead-free petrol, interest in combustion chamber deposits in spark ignition engines has ben renewed. These deposits cause octane requirement increase or rise in engine knock and decreased volumetric efficiency. The detrimental effect of the deposits has been attributed to the physical volume of the deposit and to changes in heat transfer. This study attempts to assess why leaded deposits, though often greater in mass and volume, yield relatively lower ORI when compared to lead-free deposits under identical operating conditions. This has been carried out by identifying the differences in the physical nature of the deposit and then through measurement of the thermal conductivity and permeability of the deposits. The measured thermal conductivity results are later used in a mathematical model to determine heat transfer rates and temperature variation across the engine wall and deposit. For the model, the walls of the combustion cylinder and top are assumed to be free of engine deposit, the major deposit being on the piston head. Seven different heat transfer equations are formulated describing heat flow at each part of the four stroke cycle, and the variation of cylinder wall area exposed to gas mixture is accounted for. The heat transfer equations are solved using numerical methods and temperature variations across the wall identified. Though the calculations have been carried out for one particular moment in the cycle, similar calculations are possible for every degree of the crank angle, and thus further information regarding location of maximum temperatures at every degree of the crank angle may also be determined. In conclusion, thermal conductivity values of leaded and lead-free deposits have been found. The fundamental concepts of a mathematical model with great potential have been formulated and it is hoped that with future work it may be used in a simulation for different engine construction materials and motor fuels, leading to better design of future prototype engines.
Resumo:
This thesis presents a number of methodological developments that were raised by a real life application to measuring the efficiency of bank branches. The advent of internet banking and phone banking is changing the role of bank branches from a predominantly transaction-based one to a sales-oriented role. This fact requires the development of new forms of assessing and comparing branches of a bank. In addition, performance assessment models must also take into account the fact that bank branches are service and for-profit organisations to which providing adequate service quality as well as being profitable are crucial objectives. This study analyses bank branches performance in their new roles in three different areas: their effectiveness in fostering the use of new transaction channels such as the internet and the telephone (transactional efficiency); their effectiveness in increasing sales and their customer base (operational efficiency); and their effectiveness in generating profits without compromising the quality of service (profit efficiency). The chosen methodology for the overall analysis is Data Envelopment Analysis (DEA). The application attempted here required some adaptations to existing DEA models and indeed some new models so that some specialities of our data could be handled. These concern the development of models that can account for negative data, the development of models to measure profit efficiency, and the development of models that yield production units with targets that are nearer to their observed levels than targets yielded by traditional DEA models. The application of the developed models to a sample of Portuguese bank branches allowed their classification according to the three performance dimensions (transactional, operational and profit efficiency). It also provided useful insights to bank managers regarding how bank branches compare between themselves in terms of their performance, and how, in general, the three performance dimensions are connected between themselves.
Resumo:
The use of immunological adjuvants has been established since 1924 and ever since many candidates have been extensively researched in vaccine development. The controlled release of vaccine is another area of biotechnology research, which is advancing rapidly with great potential and success. Encapsulation of peptide and protein drugs within biodegradable microspheres has been amongst the most successful of approaches within the past decade. The present studies have focused on combining the advantages of microsphere delivery systems composed of biodegradable polylactide (PLLA) and polylactide-co-glycolide (PLGA) polymers with that of safe and effective adjuvants. The research efforts were directed to the development of single-dose delivery vehicles which, can be manufactured easily, safely, under mild and favourable conditions to the encapsulated antigens. In pursuing this objective non ionic block copolymers (NIBCs) (Pluronics@ LI01 and L121) were incorporated within poly-dl-lactide (PDLA) micorospheres prepared with emulsification-diffusion method. LI0I and L121 served both as adjuvants and stabilising agents within these vaccine delivery vehicles. These formulations encapsulating the model antigens lysozyme, ovalbumin (OVA) and diphtheria toxoid (DT) resulted in high entrapment efficiency (99%), yield (96.7%) and elicited high and sustained immune response (IgG titres up to 9427) after one single administration over nine months. The structural integrity of the antigens was preserved within these formulations. In evaluating new approaches for the use of well-established adjuvants such as alum, these particles were incorporated within PLLA and PLGA microspheres at much lesser quantities (5-10 times lower) than those contained within conventional alum-adsorbed vaccines. These studies focused on the incorporation of the clinically relevant tetanus toxoid (TT) antigen within biodegradable microspheres. The encapsulation of both alum particles and TT antigen within these micropheres resulted in preparations with high encapsulation efficiency (95%) and yield (91.2%). The immune response to these particles was also investigated to evaluate the secretion of serum IgG, IgG1, IgG2a and IgG2b after a single administration of these vaccines. The Splenic cells proliferation was also investigated as an indication for the induction of cell mediated immunity. These particles resulted in high and sustained immune response over a period of 14 months. The stability of TT within particles was also investigated under dry storage over a period of several months. NIBC microspheres were also investigated as potential DNA vaccine delivery systems using hepatitis B plasmid. These particles resulted in micro spheres of 3-5 μm diameter and were shown to preserve the integrity of the encapsulated (27.7% entrapment efficiency) hepatitis B plasmid.
Resumo:
Manufacturing firms are driven by competitive pressures to continually improve the effectiveness and efficiency of their organisations. For this reason, manufacturing engineers often implement changes to existing processes, or design new production facilities, with the expectation of making further gains in manufacturing system performance. This thesis relates to how the likely outcome of this type of decision should be predicted prior to its implementation. The thesis argues that since manufacturing systems must also interact with many other parts of an organisation, the expected performance improvements can often be significantly hampered by constraints that arise elsewhere in the business. As a result, decision-makers should attempt to predict just how well a proposed design will perform when these other factors, or 'support departments', are taken into consideration. However, the thesis also demonstrates that, in practice, where quantitative analysis is used to evaluate design decisions, the analysis model invariably ignores the potential impact of support functions on a system's overall performance. A more comprehensive modelling approach is therefore required. A study of how various business functions interact establishes that to properly represent the kind of delays that give rise to support department constraints, a model should actually portray the dynamic and stochastic behaviour of entities in both the manufacturing and non-manufacturing aspects of a business. This implies that computer simulation be used to model design decisions but current simulation software does not provide a sufficient range of functionality to enable the behaviour of all of these entities to be represented in this way. The main objective of the research has therefore been the development of a new simulator that will overcome limitations of existing software and so enable decision-makers to conduct a more holistic evaluation of design decisions. It is argued that the application of object-oriented techniques offers a potentially better way of fulfilling both the functional and ease-of-use issues relating to development of the new simulator. An object-oriented analysis and design of the system, called WBS/Office, are therefore presented that extends to modelling a firm's administrative and other support activities in the context of the manufacturing system design process. A particularly novel feature of the design is the ability for decision-makers to model how a firm's specific information and document processing requirements might hamper shop-floor performance. The simulator is primarily intended for modelling make-to-order batch manufacturing systems and the thesis presents example models created using a working version of WBS/Office that demonstrate the feasibility of using the system to analyse manufacturing system designs in this way.
Resumo:
The effects of ultrasonic agitation on deposition from two iron group alloy plating solutions, nickel-cobalt and bright nickel-iron, have been studied. Comparison has been made with deposits plated from the same solutions using controlled air agitation. The ultrasonic equipment employed had a fixed frequency of 13 KHz but the power output from each transducer was variable up to a maximum of 350 watts. The effects of air and ultrasonic agitation on hardness, ductility, tensile strength, composition, structure, surface topography, limiting current density, cathode current efficiency and macro-throwing power were determined. Transmission and scanning electron microscopy, electron-probe microanalysis and atomic absorption spectrophotometry have been employed to study the nickel alloy deposits produced. The results obtained show that the use of Ultrasonics increased significantly the hardness of both alloy deposits and altered their composition by decreasing the cobalt and iron contents from nickel-cobalt and nickeliron solutions respectively. The ductility of coatings improved but the tensile strength did not change very much. Ultrasonic agitation gave larger grained deposits than air and they seemed to have a lower stress. Dull cobalt-nickel deposits had a similar pyramidal surface topography regardless of the type of agitation but the bright appearance of the nickel-iron was destroyed by ultrasonic agitation; an unusual ribbed pattern was produced. The use of ultrasonic agitation permitted approximately a twofold increase in the plating current density at which sound deposits could be achieved but there was only a slight increase in cathode current efficiency. Macro-throwing power of the solutions was increased slightly by the use of ultrasonic agitation. ultrasonic agitation is an expensive means of agitating plating Solutions and would be worthwhile only if significant improvements in properties could be achieved. The simultaneous improvement in hardness and ductility is a novel feature that should have useful engineering applications.
Resumo:
This thesis records the design and development of an electrically driven, air to water, vapour compression heat pump of nominally 6kW heat output, for residential space heating. The study was carried out on behalf of GEC Research Ltd through the Interdisciplinary Higher Degrees Scheme at Aston University. A computer based mathematical model of the vapour compression cycle was produced as a design aid, to enable the effects of component design changes or variations in operating conditions to be predicted. This model is supported by performance testing of the major components, which revealed that improvements in the compressor isentropic efficiency offer the greatest potential for further increases in cycle COPh. The evaporator was designed from first principles, and is based on wire-wound heat transfer tubing. Two evaporators, of air side area 10.27 and 16.24m2, were tested in a temperature and humidity controlled environment, demonstrating that the benefits of the large coil are greater heat pump heat output and lower noise levels. A systematic study of frost growth rates suggested that this problem is most severe at the conditions of saturated air at 0oC combined with low condenser water temperature. A dynamic simulation model was developed to predict the in-service performance of the heat pump. This study confirmed the importance of an adequate radiator area for heat pump installations. A prototype heat pump was designed and manufactured, consisting of a hermetic reciprocating compressor, a coaxial tube condenser and a helically coiled evaporator, using Refrigerant 22. The prototype was field tested in a domestic environment for one and a half years. The installation included a comprehensive monitoring system. Initial problems were encountered with defrosting and compressor noise, both of which were solved. The unit then operated throughout the 1985/86 heating season without further attention, producing a COPh of 2.34.
Resumo:
This study proposes a new type of greenhouse for water re-use and energy saving for agriculture in arid and semi-arid inland regions affected by groundwater salinity. It combines desalination using reverse osmosis (RO), re-use of saline concentrate rejected by RO for cooling, and rainwater harvesting. Experimental work was carried at GBPUAT, Pantnagar, India. Saline concentrate was fed to evaporative cooling pads of greenhouse and found to evaporate at similar rates as conventional freshwater. Two enhancements to the system are described: i) A jet pump, designed and tested to use pressurized reject stream to re-circulate cooling water and thus maintain uniform wetness in cooling pads, was found capable of multiplying flow of cooling water by a factor of 2.5 to 4 while lifting water to a head of 1.55 m; and ii) Use of solar power to drive ventilation fans of greenhouse, for which an electronic circuit has been produced that uses maximum power-point tracking to maximize energy efficiency. Re-use of RO rejected concentrate for cooling saves water (6 l d-1 m-2) of greenhouse floor area and the improved fan could reduce electricity consumption by a factor 8.
Resumo:
Optically multiplexed multi-carrier systems with channel spacing reduced to the symbol rate per carrier are highly susceptible to inter-channel crosstalk, which places stringent requirements for the specifications of system components and hinders the use of high-level formats. In this paper, we investigate the performance benefits of using offset 4-, 16-, and 64-quadrature amplitude modulation (QAM) in coherent wavelength division multiplexing (CoWDM). We compare this system with recently reported Nyquist WDM and no-guard-interval optical coherent orthogonal frequency division multiplexing, and show that the presented system greatly relaxes the requirements for device specifications and enhances the spectral efficiency by enabling the use of high-level QAM. The achieved performance can approach the theoretical limits using practical components.
Resumo:
Background: Pulmonary gene therapy requires aerosolisation of the gene vectors to the target region of the lower respiratory tract. Pulmonary absorption enhancers have been shown to improve the penetration of pharmaceutically active ingredients in the airway. In this study, we investigate whether certain absorption enhancers may also enhance the aerosolisation properties of spray-dried powders containing non-viral gene vectors. Methods: Spray-drying was used to prepare potentially respirable trehalose-based dry powders containing lipid-polycation-pDNA (LPD) vectors and absorption enhancers. Powder morphology and particle size were characterised using scanning electron microscopy and laser diffraction, respectively, with gel electrophoresis used to assess the structural integrity of the pDNA. The biological functionality of the powders was quantified using in vitro cell (A549) transfection. Aerosolisation from a Spinhaler® dry powder inhaler into a multistage liquid impinger (MSLI) was used to assess the in vitro dispersibility and deposition of the powders. Results: Spray-dried powder containing dimethyl-β-cyclodextrin (DMC) demonstrated substantially altered particle morphology and an optimal particle size distribution for pulmonary delivery. The inclusion of DMC did not adversely affect the structural integrity of the LPD complex and the powder displayed significantly greater transfection efficiency as compared to unmodified powder. All absorption enhancers proffered enhanced powder deposition characteristics, with the DMC-modified powder facilitating high deposition in the lower stages of the MSLI. Conclusions: Incorporation of absorption enhancers into non-viral gene therapy formulations prior to spray-drying can significantly enhance the aerosolisation properties of the resultant powder and increase biological functionality at the site of deposition in an in vitro model. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
This article examines cost economies, productivity growth and cost efficiency of the Chinese banks using a unique panel dataset that identifies banks' four outputs and four input prices over the period of 1995-2001. By assessing the appropriateness of model specification, and making use of alternative methodologies in evaluating the performance of banks, we find that the joint-stock commercial banks outperform state-owned commercial banks in productivity growth and cost efficiency. Under the variable cost assumption, Chinese banks display economies of scale, with state-owned commercial banks enjoying cost advantages over the joint-stock commercial banks. Consequently, our results highlight the ownership advantage of these two types of banks and generally support the ongoing banking reform and transformation that is currently taking place in China.
Resumo:
It is generally believed that the structural reforms that were introduced in India following the macro-economic crisis of 1991 ushered in competition and forced companies to become more efficient. However, whether the post-1991 growth is an outcome of more efficient use of resources or greater use of factor inputs remains an open empirical question. In this paper, we use plant-level data from 1989–1990 and 2000–2001 to address this question. Our results indicate that while there was an increase in the productivity of factor inputs during the 1990s, most of the growth in value added is explained by growth in the use of factor inputs. We also find that median technical efficiency declined in all but one of the industries between 1989–1990 and 2000–2001, and that change in technical efficiency explains a very small proportion of the change in gross value added.
Resumo:
The aim of this paper is to identify and evaluate potential areas of technical improvement to solar-powered desalination systems that use reverse osmosis (RO). We compare ideal with real specific energy consumption (SEC) to pinpoint the causes of inefficiency. The ideal SEC is compared among different configurations including a batch system driven by a piston, and continuous systems with single or multiple stages with or without energy recovery in each case. For example, to desalinate 1 m3 of freshwater from normal seawater (osmotic pressure 27 bar) will require at least 0.94 kWh of solar energy; thus in a sunny coastal location, up to 1850 m3 of water per year per m2 (m3/m2) of land covered by solar collectors could theoretically be desalinated. For brackish water (osmotic pressure 3 bar), 11570 m3/m2 of fresh water could theoretically be obtained under the same conditions. These ideal values are compared with practically achieved values reported in the literature. The practical energy consumption is found to be typically 40-200 times higher depending on feed water composition, system configuration and energy recovery. For state-of-the-art systems, energy losses at the various steps in the conversion process are quantified and presented with the help of Sankey diagrams. Improvements that could reduce the losses are discussed. Consequently, recommendations for areas of R&D are highlighted with particular reference to emerging technologies. It is concluded that there is considerable scope to improve the efficiency of solar-powered RO system.