976 resultados para Unitybetween books 1 to 4
Resumo:
An extensive repertoire of protein 4.1R isoforms is predominantly generated by alternative pre-mRNA splicing and differential usage of two translation initiation sites. The usage of the most upstream ATG (ATG-1) generates isoforms containing N-terminal extensions of up to 209 aa compared with those translated from the downstream ATG (ATG-2). To characterize nonerythroid 4.1R proteins translated from ATG-1 and analyze their intracellular localization, we cloned 4.1R cDNAs containing this translation initiation site. Six different clones were isolated from the nucleated human MOLT-4 T-cell line by reverse transcriptase–PCR techniques. Transient expression of the six ATG-1-translated 4.1R isoforms tagged with a c-Myc epitope revealed that all of them predominantly distributed to the plasma membrane and the endoplasmic reticulum. Staining of MOLT-4 cell plasma membranes but not nuclei was also observed by immunofluorescence microscopy by using an antibody specific to the N-terminal extension. Consistent with this, the antibody reacted with a major endogenous protein of ≈145 kDa present in nonnuclear but absent from nuclear fractions prepared from MOLT-4 cells. Because these data suggested that ATG-1-translated 4.1R isoforms were predominantly excluded from the nucleus, we fused the 209-aa domain to nuclear 4.1R isoforms encoded from ATG-2 and observed that this domain inhibited their nuclear targeting. All these results indicate that the N-terminal domain of ATG-1-translated 4.1R isoforms plays a pivotal role in differential targeting of proteins 4.1R.
Resumo:
In previous work with soybean (Glycine max), it was reported that the initial product of 3Z-nonenal (NON) oxidation is 4-hydroperoxy-2E-nonenal (4-HPNE). 4-HPNE can be converted to 4-hydroxy-2E-nonenal by a hydroperoxide-dependent peroxygenase. In the present work we have attempted to purify the 4-HPNE-producing oxygenase from soybean seed. Chromatography on various supports had shown that O2 uptake with NON substrate consistently coincided with lipoxygenase (LOX)-1 activity. Compared with oxidation of LOX's preferred substrate, linoleic acid, the activity with NON was about 400- to 1000-fold less. Rather than obtaining the expected 4-HPNE, 4-oxo-2E-nonenal was the principal product of NON oxidation, presumably arising from the enzyme-generated alkoxyl radical of 4-HPNE. In further work a precipitous drop in activity was noted upon dilution of LOX-1 concentration; however, activity could be enhanced by spiking the reaction with 13S-hydroperoxy-9Z,11E-octadecadienoic acid. Under these conditions the principal product of NON oxidation shifted to the expected 4-HPNE. 4-HPNE was demonstrated to be 83% of the 4S-hydroperoxy-stereoisomer. Therefore, LOX-1 is also a 3Z-alkenal oxygenase, and it exerts the same stereospecificity of oxidation as it does with polyunsaturated fatty acids. Two other LOX isozymes of soybean seed were also found to oxidize NON to 4-HPNE with an excess of 4S-hydroperoxy-stereoisomer.
Resumo:
A 145-kDa tyrosine-phosphorylated protein that becomes associated with Shc in response to multiple cytokines has been purified from the murine hemopoietic cell line B6SUtA1. Amino acid sequence data were used to clone the cDNA encoding this protein from a B6SUtA1 library. The predicted amino acid sequence encodes a unique protein containing an N-terminal src homology 2 domain, two consensus sequences that are targets for phosphotyrosine binding domains, a proline-rich region, and two motifs highly conserved among inositol polyphosphate 5-phosphatases. Cell lysates immunoprecipitated with antiserum to this protein exhibited both phosphatidylinositol 3,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. This novel signal transduction intermediate may serve to modulate both Ras and inositol signaling pathways. Based on its properties, we suggest the 145-kDa protein be called SHIP for SH2-containing inositol phosphatase.
Resumo:
Notation indicates that books were transported by a Captain Marshall.