980 resultados para United States. Employment and Training Administration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pacific sea surface temperatures (SSTs) are examined for their associations with (1) summer rainfall, and (2) the latitude location of the mid-tropospheric subtropical high pressure ridge (STR) in the southwestern United States during 1945 to 1986. Extreme northward (southward) displacements of STR are associated with wet (dry) summers over Arizona and an enhanced (weakened) gradient of SST off the California and Baja coasts. These tend to follow winters marked by positive (negative) phases of the PNA, Pacific/North America, teleconnection pattern. Recent decadal variations of Arizona summer rainfall (1950s wet; 1970s dry) appear similarly related to southwestern United States synoptic circulation and eastern Pacific SSTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire statistics (area burned) and fire-scar chronologies from tree rings show reduced fire activity during El Niño-Southern Oscillation (ENSO) in forests of Arizona and New Mexico. This relationship probably stems from increased fuel moisture after a wet winter and spring, but also could involve climatic controls on lightning activity at the onset of the monsoon season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-spectral analysis of regional tree-ring data suggests the spatial pattern of correlation between moisture variations in the Sierra Nevada of central California and in other parts of the western United States is frequency dependent. Short wavelengths (2.8 to 10.7 years), perhaps associated with El Niño/Southern Oscillation, are strongly coherent both to the north (Oregon) and to the south (Southern California). Longer wavelengths (45 to 75 years) are strongly coherent only to the north. Frequency bands corresponding to annual sunspot series were associated with relatively weak patterns of spatial correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): We examined atmospheric circulation conditions conducive to occurrence of winter floods that exceed the 10-year peak discharge on rivers in six hydroclimatic subregions in Arizona, southern Utah, Nevada, and California. ... This relationship between flooding and broad-scale atmospheric patterns in the modern record will aid in paleoclimatic interpretations of paleoflood records over the last few thousand years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wintertime precipitation in the mountains of the western United States during a warm or cool period has a pronounced influence on streamflow. During a warm year, streamflow at intermediate elevations responds more immediately to precipitation events; during a cold year, much of the discharge is delayed until the snow melts in spring and summer. Previous efforts at studying these extremes have been hampered by a limited number and length of observational analyses. In this study, we augment this limited observational record by analyzing a simplified general circulation model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): The influence of ENSO on atmospheric circulation and precipitation over the western United States is presented from two perspectives. First, ENSO-associated circulation patterns over the North Pacific/North America sector were identified using an REOF (rotated empirical orthogonal function) analysis of the 700-mb height field and compositing these for extreme phases of the Southern Oscillation Index. ... Second, we examine the variability of precipitation during the warm and cool phases of ENSO for different locations in the western United States.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): In the mountainous western United States, winter weather has consequences for the entire year, especially with respect to the use of water. For most of the past 6-8 years, drought has been a persistent feature of the climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key to understanding the causes for climate variability lies in understanding how atmospheric circulation influences regional climate. The goal of this research is to investigate the long-term relationships between atmospheric circulation and winter climate in the southwestern United States. Patterns of atmospheric circulation are described by circulation indices, and winter climate is defined as number of days with precipitation and mean maximum temperature for the winter wet season, November through March. Records of both circulation indices and climate variables were reconstructed with tree-ring chronologies for the period 1702-1983. The years of the highest and lowest values of circulation indices and climate variables were compared in order to investigate possible spatial and temporal relationships between extremes in circulation and climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

McInnes, C., 'A different kind of war? 11 September and the United States' Afghan war'. Review of International Studies, 29 (2), 165-184. RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Veterans Health Administration (VHA) in the Department of Veteran Affairs (VA) has emerged as a national and international leader in the delivery and research of telehealth-based treatment. Several unique characteristics of care in VA settings intersect to create an ideal environment for telehealth modalities and research. However, the value of telehealth experience and initiatives in VA settings is limited if telehealth strategies cannot be widely exported to other public or private systems. Whereas a hierarchical organization, such as VA, can innovate and fund change relatively quickly based on provider and patient preferences and a growing knowledge base, other health provider organizations and third-party payers may likely require replicable scientific findings over time before incremental investments will be made to create infrastructure, reform regulatory barriers, and amend laws to accommodate expansion of telehealth modalities. Accordingly, large-scale scientifically rigorous telehealth research in VHA settings is essential not only to investigate the efficacy of existing and future telehealth practices in VHA, but also to hasten the development of telehealth infrastructure in private and other public health settings. We propose an expanded partnership between the VA, NIH, and other funding agencies to investigate creative and pragmatic uses of telehealth technology. To this end, we identify six specific areas of research we believe to be particularly relevant to the efficient development of telehealth modalities in civilian and military contexts outside VHA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE/BACKGROUND: Dynamic balance is an important component of motor skill development. Poor dynamic balance has previously been associated with sport related injury. However, the vast majority of dynamic balance studies as they relate to sport injury have occurred in developed North American or European countries. Thus, the purpose of this study was to compare dynamic balance in adolescent male soccer players from Rwanda to a matched group from the United States. METHODS: Twenty-six adolescent male soccer players from Rwanda and 26 age- and gender-matched control subjects from the United States were screened using the Lower Quarter Y Balance Test during their pre-participation physical. Reach asymmetry (cm) between limbs was examined for all reach directions. In addition, reach distance in each direction (normalized to limb length, %LL) and the composite reach score (also normalized to %LL) were examined. Dependent samples t-tests were performed with significant differences identified at p<0.05. RESULTS: Twenty-six male soccer players from Rwanda (R) were matched to twenty-six male soccer players from the United States (US). The Rwandan soccer players performed better in the anterior (R: 83.9 ± 3.2 %LL; US: 76.5 ± 6.6 %LL, p<0.01), posterolateral (R: 114.4 ± 8.3 %LL ; US: 106.5 ± 8.2 %LL, p<0.01) and composite (R: 105.6 ± 1.3 %LL; US: 97.8 ± 6.2 %LL, p<0.01) reach scores. No significant differences between groups were observed for reach asymmetry. CONCLUSIONS: Adolescent soccer players from Rwanda exhibit superior performance on a standardized dynamic balance test as comparison to similar athletes from the United States. The examination of movement abilities of athletes from countries of various origins may allow for a greater understanding of the range of true normative values for dynamic balance. LEVELS OF EVIDENCE: 3b.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the changes of the North Atlantic subtropical high (NASH) and its impact on summer precipitation over the southeastern (SE) United States using the 850-hPa geopotential height field in the National Centers forEnvironmental Prediction (NCEP) reanalysis, the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), long-term rainfall data, and Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model simulations during the past six decades (1948-2007). The results show that the NASH in the last 30 yr has become more intense, and its western ridge has displaced westward with an enhanced meridional movement compared to the previous 30 yr. When the NASH moved closer to the continental United States in the three most recent decades, the effect of the NASH on the interannual variation of SE U.S. precipitation is enhanced through the ridge's north-south movement. The study's attribution analysis suggested that the changes of the NASH are mainly due to anthropogenic warming. In the twenty-first century with an increase of the atmospheric CO2 concentration, the center of the NASH would be intensified and the western ridge of the NASH would shift farther westward. These changes would increase the likelihood of both strong anomalously wet and dry summers over the SEUnited States in the future, as suggested by the IPCC AR4 models. © 2011 American Meteorological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.The frequency and severity of extreme events are tightly associated with the variance of precipitation. As climate warms, the acceleration in hydrological cycle is likely to enhance the variance of precipitation across the globe. However, due to the lack of an effective analysis method, the mechanisms responsible for the changes of precipitation variance are poorly understood, especially on regional scales. Our study fills this gap by formulating a variance partition algorithm, which explicitly quantifies the contributions of atmospheric thermodynamics (specific humidity) and dynamics (wind) to the changes in regional-scale precipitation variance. Taking Southeastern (SE) United States (US) summer precipitation as an example, the algorithm is applied to the simulations of current and future climate by phase 5 of Coupled Model Intercomparison Project (CMIP5) models. The analysis suggests that compared to observations, most CMIP5 models (~60 %) tend to underestimate the summer precipitation variance over the SE US during the 1950–1999, primarily due to the errors in the modeled dynamic processes (i.e. large-scale circulation). Among the 18 CMIP5 models analyzed in this study, six of them reasonably simulate SE US summer precipitation variance in the twentieth century and the underlying physical processes; these models are thus applied for mechanistic study of future changes in SE US summer precipitation variance. In the future, the six models collectively project an intensification of SE US summer precipitation variance, resulting from the combined effects of atmospheric thermodynamics and dynamics. Between them, the latter plays a more important role. Specifically, thermodynamics results in more frequent and intensified wet summers, but does not contribute to the projected increase in the frequency and intensity of dry summers. In contrast, atmospheric dynamics explains the projected enhancement in both wet and dry summers, indicating its importance in understanding future climate change over the SE US. The results suggest that the intensified SE US summer precipitation variance is not a purely thermodynamic response to greenhouse gases forcing, and cannot be explained without the contribution of atmospheric dynamics. Our analysis provides important insights to understand the mechanisms of SE US summer precipitation variance change. The algorithm formulated in this study can be easily applied to other regions and seasons to systematically explore the mechanisms responsible for the changes in precipitation extremes in a warming climate.