983 resultados para Unitarity corrections
Resumo:
Aerosol mass spectrometers (AMS) are powerful tools in the analysis of the chemical composition of airborne particles, particularly organic aerosols which are gaining increasing attention. However, the advantages of AMS in providing on-line data can be outweighed by the difficulties involved in its use in field measurements at multiple sites. In contrast to the on-line measurement by AMS, a method which involves sample collection on filters followed by subsequent analysis by AMS could significantly broaden the scope of AMS application. We report the application of such an approach to field studies at multiple sites. An AMS was deployed at 5 urban schools to determine the sources of the organic aerosols at the schools directly. PM1 aerosols were also collected on filters at these and 20 other urban schools. The filters were extracted with water and the extract run through a nebulizer to generate the aerosols, which were analysed by an AMS. The mass spectra from the samples collected on filters at the 5 schools were found to have excellent correlations with those obtained directly by AMS, with r2 ranging from 0.89 to 0.98. Filter recoveries varied between the schools from 40 -115%, possibly indicating that this method provides qualitative rather than quantitative information. The stability of the organic aerosols on Teflon filters was demonstrated by analysing samples stored for up to two years. Application of the procedure to the remaining 20 schools showed that secondary organic aerosols were the main source of aerosols at the majority of the schools. Overall, this procedure provides accurate representation of the mass spectra of ambient organic aerosols and could facilitate rapid data acquisition at multiple sites where AMS could not be deployed for logistical reasons.
Resumo:
The surface area of inhaled particles deposited in the alveolar region, as reported by the TSI nanoparticle surface area monitor (NSAM), was compared with the corresponding value estimated by a TSI scanning mobility particle sizer (SMPS) for a range of environmentally relevant aerosols, including petrol emissions, ETS, laser printer emissions, cooking emissions and ambient aerosols. The SMPS values were based on a mobility size distribution assuming spherical particles using the appropriate size-dependent alveolar-deposition factors provided by the ICRP. In most cases, the two instruments showed good linear agreement. With petrol emissions and ETS, the linearity extended to over 103 μm2 cm-3. With printer emissions, there was good linearity up to about 300 μm2 cm-3 while the NSAM increasingly overestimated the surface area at higher concentrations. The presence of a nucleation event in ambient air caused the NSAM to over-estimate the surface area by a factor of 2. We summarize these results and conclude that the maximum number concentration up to which the NSAM is accurate clearly depends on the type of aerosol being sampled and provide guidance for the use of the instrument.
Resumo:
An Aerodyne Aerosol Mass Spectrometer was deployed at five urban schools to examine spatial and temporal variability of organic aerosols (OA) and positive matrix factorization (PMF) used for the first time in the Southern Hemisphere to apportion the sources of the OA across an urban area. The sources identified included hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and oxygenated OA (OOA). At all sites, the main source was OOA, which accounted for 62–73% of the total OA mass and was generally more oxidized compared to those reported in the Northern Hemisphere. This suggests that there are differences in aging processes or regional sources in the two hemispheres. Unlike HOA and BBOA, OOA demonstrated instructive temporal variations but not spatial variation across the urban area. Application of cluster analysis to the PMF-derived sources offered a simple and effective method for qualitative comparison of PMF sources that can be used in other studies.
Resumo:
Exposure to ultrafine particles (UFPs) is deemed to be a major risk affecting human health. Therefore, airborne particle studies were performed in the recent years to evaluate the most critical micro-environments, as well as identifying the main UFP sources. Nonetheless, in order to properly evaluate the UFP exposure, personal monitoring is required as the only way to relate particle exposure levels to the activities performed and micro-environments visited. To this purpose, in the present work, the results of experimental analysis aimed at showing the effect of the time-activity patterns on UFP personal exposure are reported. In particular, 24 non-smoking couples (12 during winter and summer time, respectively), comprised of a man who worked full-time and a woman who was a homemaker, were analyzed using personal particle counter and GPS monitors. Each couple was investigated for a 48-h period, during which they also filled out a diary reporting the daily activities performed. Time activity patterns, particle number concentration exposure and the related dose received by the participants, in terms of particle alveolar-deposited surface area, were measured. The average exposure to particle number concentration was higher for women during both summer and winter (Summer: women 1.8×104 part. cm-3; men 9.2×103 part. cm-3; Winter: women 2.9×104 part. cm-3; men 1.3×104 part. cm-3), which was likely due to the time spent undertaking cooking activities. Staying indoors after cooking also led to higher alveolar-deposited surface area dose for both women and men during the winter time (9.12×102 and 6.33×102 mm2, respectively), when indoor ventilation was greatly reduced. The effect of cooking activities was also detected in terms of women’s dose intensity (dose per unit time), being 8.6 and 6.6 in winter and summer, respectively. On the contrary, the highest dose intensity activity for men was time spent using transportation (2.8 in both winter and summer).
Resumo:
A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.
Resumo:
In this report, a detailed FTIR fitting analysis was used to recognize Mg, Zn and Al homogeneous distribution in MgxZnyAl(x+y)/2-Layered double hydroxide (LDH) hydroxyl layer. In detail, OH-Mg2Al:OH-Mg3 ratios decreased from 95.2:4.8 (MIR) and 94.2:5.8 (NIR) to 58.9:41.1 (MIR) and 61.8:38.2 (NIR), when Mg:Al increased from 2.2:1.0 to 4.1:1.0 in MgAl-LDHs. These fitting results were similar with theoretical calculations of 94.3:5.7 and 59.0:41.0. In a further analysis of MgxZnyAl(x+y)/2-LDHs, OH bonded Zn2Mg, Zn2Al, MgZnAl, Mg2Al and Mg2Zn peaks were identified at 3420, 3430, 3445–3450, 3454 and 3545 cm-1, respectively. With the decrease of Mg:Zn from 3:1 to 1:3, metal-hydroxyl bands changed from OH-Mg2Al and MgZnAl (with a ratio of 49.4:50.6) to OH-MgZnAl and Zn2Al (with a ratio of 55.0:45.0). They were also similar with theoretical calculations of 47.6:52.4 and 54.6:45.4. As a result, these results show that there is an ordered cation distribution in MgxZnyAl(x+y)/2-LDH, and FTIR is feasible in recognizing this structure.
Resumo:
Problem: In response to an identified need, a specialist antenatal clinic for women from refugee backgrounds was introduced in 2008, with an evaluation planned and completed in 2010. Question: Can maternity care experiences for women from refugee backgrounds, attending a specialist antenatal clinic in a tertiary Australian public hospital, be improved? Methods: The evaluation employed mixed methods, generating qualitative and quantitative data from two hospital databases, a chart audit, surveys and interviews with service users, providers and stakeholders. Contributions were received from 202 participants. Findings: The clinic was highly regarded by all participants. Continuity of care throughout the antenatal period was particularly valued by newly arrived women as it afforded them security and support to negotiate an unfamiliar Western maternity system. Positive experiences decreased however; as women transitioned from the clinic to labour and postnatal wards where they reported that their traditional birthing and recuperative practices were often interrupted by the imposition of Western biomedical notions of appropriate care. The centrally located clinic was problematic, frequently requiring complex travel arrangements. Appointment schedules often impacted negatively on traditional spousal and family obligations. Conclusions: Providing comprehensive and culturally responsive maternity care for women from refugee backgrounds is achievable, however it is also resource intensive. The production of translated information which is high quality in terms of production and content, whilst also taking account of languages which are only rarely encountered, is problematic. Cultural competency programmes for staff, ideally online, require regular updating in light of new knowledge and changing political sensitivities.
Resumo:
A numerical investigation has been carried out for the coupled thermal boundary layers on both sides of a partition placed in an isosceles triangular enclosure along its middle symmetric line. The working fluid is considered as air which is initially quiescent. A sudden temperature difference between two zones of the enclosure has been imposed to trigger the natural convection. It is anticipated from the numerical simulations that the coupled thermal boundary layers development adjacent to the partition undergoes three distinct stages; namely an initial stage, a transitional stage and a steady state stage. Time dependent features of the coupled thermal boundary layers as well as the overall natural convection flow in the partitioned enclosure have been discussed and compared with the non-partitioned enclosure. Moreover, heat transfer as a form of local and overall average Nusselt number through the coupled thermal boundary layers and the inclined walls is also examined.
Resumo:
Literature is limited in its knowledge of the Bluetooth protocol based data acquisition process and in the accuracy and reliability of the analysis performed using the data. This paper extends the body of knowledge surrounding the use of data from the Bluetooth Media Access Control Scanner (BMS) as a complementary traffic data source. A multi layer simulation model named Traffic and Communication Simulation (TCS) is developed. TCS is utilised to model the theoretical properties of the BMS data and analyse the accuracy and reliability of travel time estimation using the BMS data.
Resumo:
Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption there is limited domestic knowledge of greywater reuse, there is no pressure to produce lowlevel phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or a lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.
Resumo:
The purpose of Business Process Management (BPM) is to increase the efficiency and effectiveness of organizational processes through improvement and innovation. Despite a common understanding that culture is an important element in these efforts, there is a dearth of theoretical and empirical research on culture as a facilitator of successful BPM. We develop the BPM culture construct and propose a validated instrument with which to measure organizational cultures’ support of BPM. The operationalization of the BPM culture concept provides a theoretical foundation for future research and a tool to assist organizations in developing a cultural environment that supports successful BPM.
Resumo:
Nitrous oxide emissions from intensive, fertilised agricultural systems have been identified as significant contributors to both Australia's and the global greenhouse gas (GHG) budget. This is expected to increase as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on N2O trace gas fluxes from subtropical or tropical tree cropping soils critical for the development of effective mitigation strategies.This study aimed to quantify GHG emissions over two consecutive years (March 2007 to March 2009) from a 30 year (lychee) orchard in the humid subtropical region of Australia. GHG fluxes were measured using a combination of high temporal resolution automated sampling and manually sampled chambers. No fertiliser was added to the plots during the 2007 measurement season. A split application of nitrogen fertiliser (urea) was added at the rate of 265kgNha-1 during the autumn and spring of 2008. Emissions of N2O were influenced by rainfall events and seasonal temperatures during 2007 and the fertilisation events in 2008. Annual N2O emissions from the lychee canopy increased from 1.7kgN2O-Nha-1yr-1 for 2007, to 7.6kgN2O-Nha-1yr-1 following fertiliser application in 2008. This represented an emission factor of 1.56%, corrected for background emissions. The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (2.44%) compared to autumn (EF: 1.10%). This research suggests that avoiding fertiliser application during the hot and moist spring/summer period can reduce N2O losses without compromising yields.
Resumo:
In line with repeated recent calls for research on specific forms of growth rather than on an undifferentiated notion of “total growth,” our study contributes to the understanding of entrepreneurial growth. By this we mean growth through expansion into new geographic markets and/or via the introduction of new products or services. Building on Penrose's theory of the growth of the firm and on the research streams she has in part inspired, we investigate the impact of knowledge acquisition from international markets on entrepreneurial growth both at home and abroad. We further suggest that the effects of international knowledge acquisition on entrepreneurial growth will vary with firm age. Utilizing longitudinal data on 138 small and medium-sized enterprises (SMEs), we find that the acquisition of knowledge from international markets fuels growth through market development, and that this effect is stronger for international expansion than domestic expansion. Our results also show that firm age negatively moderates the relationship between international knowledge acquisition and entrepreneurial growth via the introduction of new products or services. Specifically, international knowledge acquisition has a positive effect on growth via new products/services development in young firms, but a negative effect in mature firms. We assume this reflects changes over time in how international knowledge is managed.
Resumo:
Background aims Mesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation. Methods MSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells. Results Human L-MSC cultures were typically CD34−, CD45− and HLA-DR− and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation. Conclusions L-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model.
Resumo:
We review and discuss recent developments in best–worst scaling (BWS) that allow researchers to measure items or objects on measurement scales with known properties. We note that BWS has some distinct advantages compared with other measurement approaches, such as category rating scales or paired comparisons. We demonstrate how to use BWS to measure subjective quantities in two different empirical examples. One of these measures preferences for weekend getaways and requires comparing relatively few objects; a second measures academics' perceptions of the quality of academic marketing journals and requires comparing a significantly large set of objects. We conclude by discussing some limitations and future research opportunities related to BWS.