928 resultados para Unconstrained and convex optimization
Resumo:
In this report we discuss some of the issues involved in the specialization and optimization of constraint logic programs with dynamic scheduling. Dynamic scheduling, as any other form of concurrency, increases the expressive power of constraint logic programs, but also introduces run-time overhead. The objective of the specialization and optimization is to reduce as much as possible such overhead automatically, while preserving the semantics of the original programs. This is done by program transformation based on global analysis. We present implementation techniques for this purpose and report on experimental results obtained from an implementation of the techniques in the context of the CIAO compiler.
Resumo:
Social behaviour is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks.
Resumo:
The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.
Resumo:
In previous works we demonstrated the benefits of using micro–nano patterning materials to be used as bio-photonic sensing cells (BICELLs), referred as micro–nano photonic structures having immobilized bioreceptors on its surface with the capability of recognizing the molecular binding by optical transduction. Gestrinone/anti-gestrinone and BSA/anti-BSA pairs were proven under different optical configurations to experimentally validate the biosensing capability of these bio-sensitive photonic architectures. Moreover, Three-Dimensional Finite Difference Time Domain (FDTD) models were employed for simulating the optical response of these structures. For this article, we have developed an effective analytical simulation methodology capable of simulating complex biophotonic sensing architectures. This simulation method has been tested and compared with previous experimental results and FDTD models. Moreover, this effective simulation methodology can be used for efficiently design and optimize any structure as BICELL. In particular for this article, six different BICELL's types have been optimized. To carry out this optimization we have considered three figures of merit: optical sensitivity, Q-factor and signal amplitude. The final objective of this paper is not only validating a suitable and efficient optical simulation methodology but also demonstrating the capability of this method for analyzing the performance of a given number of BICELLs for label-free biosensing.
Resumo:
An aerodynamic optimization of the ICE 2 high-speed train nose in term of front wind action sensitivity is carried out in this paper. The nose is parametrically defined by Be?zier Curves, and a three-dimensional representation of the nose is obtained using thirty one design variables. This implies a more complete parametrization, allowing the representation of a real model. In order to perform this study a genetic algorithm (GA) is used. Using a GA involves a large number of evaluations before finding such optimal. Hence it is proposed the use of metamodels or surrogate models to replace Navier-Stokes solver and speed up the optimization process. Adaptive sampling is considered to optimize surrogate model fitting and minimize computational cost when dealing with a very large number of design parameters. The paper introduces the feasi- bility of using GA in combination with metamodels for real high-speed train geometry optimization.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are responsible of selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-tasks distribution problem and we propose a solution using two different approaches by applying Ant Colony Optimization-based deterministic algorithms as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithm, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Transformation�based implementation and optimization of programs exploiting the basic Andorra model.
Resumo:
The characteristics of CC and CLP systems are in principle very dierent However a recent trend towards convergence in the implementation techniques for these systems can be observed While CLP and Prolog systems have been incorporating capabilities to deal with userdened suspension and coroutining CC compilers have been trying to coalesce negrained tasks into coarsergrained sequential threads This convergence of techniques opens up the possibility of having a general purpose kernel language and abstract machine to serve as a compilation target for a variety of userlevel languages We propose a transformation technique directed towards such an objective In particular we report on techniques to support the Andorra computational model essentially emulating the AndorraI system via program transformation into a sequential language with delay primitives The system is automatic comprising an optional program analyzer and a basic transformer to the kernel language It turns out that a simple parallel CLP or Prolog system with dynamic scheduling is sucient as a kernel language for this purpose The preliminary results are quite encouraging performance of the resulting system is comparable to the current AndorraI implementation.
Resumo:
El diseño y desarrollo de sistemas de suspensión para vehículos se basa cada día más en el diseño por ordenador y en herramientas de análisis por ordenador, las cuales permiten anticipar problemas y resolverlos por adelantado. El comportamiento y las características dinámicas se calculan con precisión, bajo coste, y recursos y tiempos de cálculo reducidos. Sin embargo, existe una componente iterativa en el proceso, que requiere la definición manual de diseños a través de técnicas “prueba y error”. Esta Tesis da un paso hacia el desarrollo de un entorno de simulación eficiente capaz de simular, analizar y evaluar diseños de suspensiones vehiculares, y de mejorarlos hacia la solución optima mediante la modificación de los parámetros de diseño. La modelización mediante sistemas multicuerpo se utiliza aquí para desarrollar un modelo de autocar con 18 grados de libertad, de manera detallada y eficiente. La geometría y demás características de la suspensión se ajustan a las del vehículo real, así como los demás parámetros del modelo. Para simular la dinámica vehicular, se utiliza una formulación multicuerpo moderna y eficiente basada en las ecuaciones de Maggi, a la que se ha incorporado un visor 3D. Así, se consigue simular maniobras vehiculares en tiempos inferiores al tiempo real. Una vez que la dinámica está disponible, los análisis de sensibilidad son cruciales para una optimización robusta y eficiente. Para ello, se presenta una técnica matemática que permite derivar las variables dinámicas dentro de la formulación, de forma algorítmica, general, con la precisión de la maquina, y razonablemente eficiente: la diferenciación automática. Este método propaga las derivadas con respecto a las variables de diseño a través del código informático y con poca intervención del usuario. En contraste con otros enfoques en la bibliografía, generalmente particulares y limitados, se realiza una comparación de librerías, se desarrolla una formulación híbrida directa-automática para el cálculo de sensibilidades, y se presentan varios ejemplos reales. Finalmente, se lleva a cabo la optimización de la respuesta dinámica del vehículo citado. Se analizan cuatro tipos distintos de optimización: identificación de parámetros, optimización de la maniobrabilidad, optimización del confort y optimización multi-objetivo, todos ellos aplicados al diseño del autocar. Además de resultados analíticos y gráficos, se incluyen algunas consideraciones acerca de la eficiencia. En resumen, se mejora el comportamiento dinámico de vehículos por medio de modelos multicuerpo y de técnicas de diferenciación automática y optimización avanzadas, posibilitando un ajuste automático, preciso y eficiente de los parámetros de diseño. ABSTRACT Each day, the design and development of vehicle suspension systems relies more on computer-aided design and computer-aided engineering tools, which allow anticipating the problems and solving them ahead of time. Dynamic behavior and characteristics are thus simulated accurately and inexpensively with moderate computational times and resources. There is, however, an iterative component in the process, which involves the manual definition of designs in a trialand-error manner. This Thesis takes a step towards the development of an efficient simulation framework capable of simulating, analyzing and evaluating vehicle suspension designs, and automatically improving them by varying the design parameters towards the optimal solution. The multibody systems approach is hereby used to model a three-dimensional 18-degrees-of-freedom coach in a comprehensive yet efficient way. The suspension geometry and characteristics resemble the ones from the real vehicle, as do the rest of vehicle parameters. In order to simulate vehicle dynamics, an efficient, state-of-the-art multibody formulation based on Maggi’s equations is employed, and a three-dimensional graphics viewer is developed. As a result, vehicle maneuvers can be simulated faster than real-time. Once the dynamics are ready, a sensitivity analysis is crucial for a robust optimization. To that end, a mathematical technique is introduced, which allows differentiating the dynamic variables within the multibody formulation in a general, algorithmic, accurate to machine precision, and reasonably efficient way: automatic differentiation. This method propagates the derivatives with respect to the design parameters throughout the computer code, with little user interaction. In contrast with other attempts in the literature, mostly not generalpurpose, a benchmarking of libraries is carried out, a hybrid direct-automatic differentiation approach for the computation of sensitivities is developed, and several real-life examples are analyzed. Finally, a design optimization process of the aforementioned vehicle is carried out. Four different types of dynamic response optimization are presented: parameter identification, handling optimization, ride comfort optimization and multi-objective optimization; all of which are applied to the design of the coach example. Together with analytical and visual proof of the results, efficiency considerations are made. In summary, the dynamic behavior of vehicles is improved by using the multibody systems approach, along with advanced differentiation and optimization techniques, enabling an automatic, accurate and efficient tuning of design parameters.
Resumo:
In this paper some mathematical programming models are exposed in order to set the number of services on a specified system of bus lines, which are intended to assist high demand levels which may arise because of the disruption of Rapid Transit services or during the celebration of massive events. By means of this model two types of basic magnitudes can be determined, basically: a) the number of bus units assigned to each line and b) the number of services that should be assigned to those units. In these models, passenger flow assignment to lines can be considered of the system optimum type, in the sense that the assignment of units and of services is carried out minimizing a linear combination of operation costs and total travel time of users. The models consider delays experienced by buses as a consequence of the get in/out of the passengers, queueing at stations and the delays that passengers experience waiting at the stations. For the case of a congested strategy based user optimal passenger assignment model with strict capacities on the bus lines, the use of the method of successive averages is shown.
Resumo:
The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.
Resumo:
Esta tesis presenta un novedoso marco de referencia para el análisis y optimización del retardo de codificación y descodificación para vídeo multivista. El objetivo de este marco de referencia es proporcionar una metodología sistemática para el análisis del retardo en codificadores y descodificadores multivista y herramientas útiles en el diseño de codificadores/descodificadores para aplicaciones con requisitos de bajo retardo. El marco de referencia propuesto caracteriza primero los elementos que tienen influencia en el comportamiento del retardo: i) la estructura de predicción multivista, ii) el modelo hardware del codificador/descodificador y iii) los tiempos de proceso de cuadro. En segundo lugar, proporciona algoritmos para el cálculo del retardo de codificación/ descodificación de cualquier estructura arbitraria de predicción multivista. El núcleo de este marco de referencia consiste en una metodología para el análisis del retardo de codificación/descodificación multivista que es independiente de la arquitectura hardware del codificador/descodificador, completada con un conjunto de modelos que particularizan este análisis del retardo con las características de la arquitectura hardware del codificador/descodificador. Entre estos modelos, aquellos basados en teoría de grafos adquieren especial relevancia debido a su capacidad de desacoplar la influencia de los diferentes elementos en el comportamiento del retardo en el codificador/ descodificador, mediante una abstracción de su capacidad de proceso. Para revelar las posibles aplicaciones de este marco de referencia, esta tesis presenta algunos ejemplos de su utilización en problemas de diseño que afectan a codificadores y descodificadores multivista. Este escenario de aplicación cubre los siguientes casos: estrategias para el diseño de estructuras de predicción que tengan en consideración requisitos de retardo además del comportamiento tasa-distorsión; diseño del número de procesadores y análisis de los requisitos de velocidad de proceso en codificadores/ descodificadores multivista dado un retardo objetivo; y el análisis comparativo del comportamiento del retardo en codificadores multivista con diferentes capacidades de proceso e implementaciones hardware. ABSTRACT This thesis presents a novel framework for the analysis and optimization of the encoding and decoding delay for multiview video. The objective of this framework is to provide a systematic methodology for the analysis of the delay in multiview encoders and decoders and useful tools in the design of multiview encoders/decoders for applications with low delay requirements. The proposed framework characterizes firstly the elements that have an influence in the delay performance: i) the multiview prediction structure ii) the hardware model of the encoder/decoder and iii) frame processing times. Secondly, it provides algorithms for the computation of the encoding/decoding delay of any arbitrary multiview prediction structure. The core of this framework consists in a methodology for the analysis of the multiview encoding/decoding delay that is independent of the hardware architecture of the encoder/decoder, which is completed with a set of models that particularize this delay analysis with the characteristics of the hardware architecture of the encoder/decoder. Among these models, the ones based in graph theory acquire special relevance due to their capacity to detach the influence of the different elements in the delay performance of the encoder/decoder, by means of an abstraction of its processing capacity. To reveal possible applications of this framework, this thesis presents some examples of its utilization in design problems that affect multiview encoders and decoders. This application scenario covers the following cases: strategies for the design of prediction structures that take into consideration delay requirements in addition to the rate-distortion performance; design of number of processors and analysis of processor speed requirements in multiview encoders/decoders given a target delay; and comparative analysis of the encoding delay performance of multiview encoders with different processing capabilities and hardware implementations.