983 resultados para UP-CONVERSION FLUORESCENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured tungsten trioxide (WO3) photoelectrodes are potential candidates for the anodic portion of an integrated solar water-splitting device that generates hydrogen fuel and oxygen from water. These nanostructured materials can potentially offer improved performance in photooxidation reactions compared to unstructured materials because of enhancements in light scattering, increases in surface area, and their decoupling of the directions of light absorption and carrier collection. To evaluate the presence of these effects and their contributions toward energy conversion efficiency, a variety of nanostructured WO3 photoanodes were synthesized by electrodeposition within nanoporous templates and by anodization of tungsten foils. A robust fabrication process was developed for the creation of oriented WO3 nanorod arrays, which allows for control nanorod diameter and length. Films of nanostructured WO3 platelets were grown via anodization, the morphology of the films was controlled by the anodization conditions, and the current-voltage performance and spectral response properties of these films were studied. The observed photocurrents were consistent with the apparent morphologies of the nanostructured arrays. Measurements of electrochemically active surface area and other physical characteristics were correlated with observed differences in absorbance, external quantum yield, and photocurrent density for the anodized arrays. The capability to quantify these characteristics and relate them to photoanode performance metrics can allow for selection of appropriate structural parameters when designing photoanodes for solar energy conversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.

Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.

Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.

Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.

Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to beta(2) subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrins alpha(M)beta(2) plays important role on leukocytes, such as adhesion, migration, phagocytosis, and apoptosis. It was hypothesized that homomeric associations of integrin subunits provide a driving force for integrins activation, and simultaneously inducing the formation of integrins clusters. However, experimental reports on homomeric associations between integrin subunits are still controversial. Here, we proved the homomeric associations of the isolated Mac-1 subunits in living cells using three-channel fluorescence resonance energy transfer (FRET) microscopy and FRET spectra methods. We found that the extent of homomeric associations between beta(2) subunits is higher than alpha(M) subunits. Furthermore, FRET imaging indicated that the extent of homomeric associations of the Mac-1 subunits is higher along the plasma membrane than in the cytoplasm. Finally, we suggested that homomeric associations of the transmernbrane domains or/and cytoplasmic domains may provide the driving force for the formation of constitutive homomeric associations between alpha(M) or beta(2) subunits. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions of oblique incident probe wave with oncoming ionization fronts have been investigated using moving boundary conditions. Field conversion coefficients of reflection, transmission and magnetic modes produced in the interactions are derived. Phase matching conditions at the front and frequency up-shifting formulas for the three modes are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal feedback control of two-photon fluorescence in the ethanol solution of 4-dicyanomethylene-2-methyl-6-p-dimethyl-amiiiostryryl-4H-pyran (DCM) using pulse-shaping technique based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence of the DCM ethanol solution is enhanced in intensity of about 23%. The second harmonic generation frequency-resolved optical gating (SHG-FROG) trace indicates that the effective population transfer arises from the positively chirped pulse. The experimental results appear the potential applications of coherent control to the complicated molecular system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical microscopy has become an indispensable tool for biological researches since its invention, mostly owing to its sub-cellular spatial resolutions, non-invasiveness, instrumental simplicity, and the intuitive observations it provides. Nonetheless, obtaining reliable, quantitative spatial information from conventional wide-field optical microscopy is not always intuitive as it appears to be. This is because in the acquired images of optical microscopy the information about out-of-focus regions is spatially blurred and mixed with in-focus information. In other words, conventional wide-field optical microscopy transforms the three-dimensional spatial information, or volumetric information about the objects into a two-dimensional form in each acquired image, and therefore distorts the spatial information about the object. Several fluorescence holography-based methods have demonstrated the ability to obtain three-dimensional information about the objects, but these methods generally rely on decomposing stereoscopic visualizations to extract volumetric information and are unable to resolve complex 3-dimensional structures such as a multi-layer sphere.

The concept of optical-sectioning techniques, on the other hand, is to detect only two-dimensional information about an object at each acquisition. Specifically, each image obtained by optical-sectioning techniques contains mainly the information about an optically thin layer inside the object, as if only a thin histological section is being observed at a time. Using such a methodology, obtaining undistorted volumetric information about the object simply requires taking images of the object at sequential depths.

Among existing methods of obtaining volumetric information, the practicability of optical sectioning has made it the most commonly used and most powerful one in biological science. However, when applied to imaging living biological systems, conventional single-point-scanning optical-sectioning techniques often result in certain degrees of photo-damages because of the high focal intensity at the scanning point. In order to overcome such an issue, several wide-field optical-sectioning techniques have been proposed and demonstrated, although not without introducing new limitations and compromises such as low signal-to-background ratios and reduced axial resolutions. As a result, single-point-scanning optical-sectioning techniques remain the most widely used instrumentations for volumetric imaging of living biological systems to date.

In order to develop wide-field optical-sectioning techniques that has equivalent optical performance as single-point-scanning ones, this thesis first introduces the mechanisms and limitations of existing wide-field optical-sectioning techniques, and then brings in our innovations that aim to overcome these limitations. We demonstrate, theoretically and experimentally, that our proposed wide-field optical-sectioning techniques can achieve diffraction-limited optical sectioning, low out-of-focus excitation and high-frame-rate imaging in living biological systems. In addition to such imaging capabilities, our proposed techniques can be instrumentally simple and economic, and are straightforward for implementation on conventional wide-field microscopes. These advantages together show the potential of our innovations to be widely used for high-speed, volumetric fluorescence imaging of living biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal nicotinic acetylcholine receptors (nAChRs) are pentameric ligand gated ion channels abundantly expressed in the central nervous system. Changes in the assembly and trafficking of nAChRs are pertinent to disease states including nicotine dependence, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), and Parkinson’s disease (PD). Here we investigate the application of high resolution fluorescence techniques for the study of nAChR assembly and trafficking. We also describe the construction and validation of a fluorescent α5 subunit and subsequent experiments to elucidate the cellular mechanisms through which α5 subunits are expressed, assembled into mature receptors, and trafficked to the cell surface. The effects of a known single nucleotide polymorphism (D398N) in the intracellular loop of α5 are also examined.

Additionally, this report describes the development of a combined total internal reflection fluorescence (TIRF) and lifetime imaging (FLIM) technique and the first application of this methodology for elucidation of stochiometric composition of nAChRs. Many distinct subunit combinations can form functional receptors. Receptor composition and stoichiometry confers unique biophysical and pharmacological properties to each receptor sub-type. Understanding the nature of assembly and expression of each receptor subtype yields important information about the molecular processes that may underlie the mechanisms through which nAChR contribute to disease and addiction states.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Las políticas de apoyo al emprendimiento se han demostrado imprescindibles para el desarrollo económico de los países. En este contexto las conocidas incubadoras de empresas juegan un papel importante, pero los innovadores aceleradores de crecimiento que están logrando convertir pequeñas start-up en grandes compañías de base tecnológica se presentan como una apuesta para el futuro. La unión de ambos conceptos constituye un modelo eficaz de apoyo a las start-up tecnológicas. En el trabajo se presentan varios estudios que demuestran que mientras que, en las incubadoras los recursos más valorados son el ahorro de costes y el mentoring, los aceleradores obtienen muy buena calificación en todos sus ámbitos. Aun así la facilidad para obtener financiación y el mentoring también son los aspectos más valorados por los participantes en la aceleración. Además se han utilizado dos casos de éxito con el objeto de proponer un corolario de buenas prácticas que ayude entre otros, a la mejora de la situación de la Comunidad Autónoma del País Vasco (CAPV) en cuanto a emprendimiento se refiere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I: An approach to the total synthesis of the triterpene shionone is described, which proceeds through the tetracyclic ketone i. The shionone side chain has been attached to this key intermediate in 5 steps, affording the olefin 2 in 29% yield. A method for the stereo-specific introduction of the angular methyl group at C-5 of shionone has been developed on a model system. The attempted utilization of this method to convert olefin 2 into shionone is described.

Part II: A method has been developed for activating the C-9 and C-10 positions of estrogenic steroids for substitution. Estrone has been converted to 4β,5β-epoxy-10β-hydroxyestr-3-one; cleavage of this epoxyketone using an Eschenmoser procedure, and subsequent modification of the product afforded 4-seco-9-estren-3,5-dione 3-ethylene acetal. This versatile intermediate, suitable for substitution at the 9 and/or 10 position, was converted to androst-4-ene-3-one by known procedures.