944 resultados para UNCOUPLING PROTEIN-2 OVEREXPRESSION
Resumo:
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of several mutagenic and carcinogenic heterocyclic amines formed during the cooking process of protein-rich foods, These compounds are highly mutagenic and have been shown to produce tumours in various tissues in rodents and non-human primates. Metabolic activation of IQ is a two-step process involving N-hydroxylation by CYP1A2 followed by esterification to a more reactive species capable of forming adducts with DNA, To date, acetylation and sulphation have been proposed as important pathways in the formation of N-hydroxy esters, In this study we have demonstrated the presence of an ATP-dependent activation pathway for N-hydroxy-IQ (N-OH-IQ) leading to DNA adduct formation measured by covalent binding of [H-3]N-OH-IQ to DNA, ATP-dependent DNA binding of N-OH-IQ was greatest in the cytosolic fraction of rat liver, although significant activity was also seen in colon, pancreas and lung. ATP was able to activate N-OH-IQ almost 10 times faster than N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (7.7 +/- 0.3 and 0.9 +/- 0.1 pmol/mg protein/min, respectively). Using reported intracellular concentrations of cofactor, the ability of ATP to support DNA binding was similar to that seen with 3'-phosphoadenosine 5'-phosphosulphate and similar to 50% of that seen with acetyl coenzyme A (AcCoA), In addition to DNA binding, HPLC analysis of the reaction mixtures using ATP as co-factor showed the presence of two stable, polar metabolites, With AcCoA, only one metabolite was seen. The kinase inhibitors genistein, tyrphostin A25 and rottlerin significantly inhibited both DNA binding and metabolite formation with ATP. However, inhibition was unlikely to be due to effects on enzyme activity since the broad spectrum kinase inhibitor staurosporine had no effect and the inactive analogue of genistein, daidzein, was as potent as genistein, The effects of genistein and daidzein, which are naturally occurring isoflavones from soy and other food products, on DNA adduct formation may potentially be useful in the prevention of heterocyclic amine-induced carcinogenesis.
Resumo:
We previously described significant changes in GH-binding protein (GHBP) in pathological human pregnancy. There was a substantial elevation of GHBP in cases of noninsulin-dependent diabetes mellitus and a reduction in insulin-dependent diabetes mellitus. GHBP has the potential to modulate the proportion of free placental GH (PGH) and hence the impact on the maternal GH/insulin-like growth factor I (IGF-I) axis, fetal growth, and maternal glycemic status. The present study was undertaken to investigate the relationship among glycemia, GHBP, and PGH during pregnancy and to assess the impact of GHBP on the concentration of free PGH. We have extended the analysis of specimens to include measurements of GHBP, PGH, IGF-I, IGF-II, IGF-binding protein-1 (IGFBP-1), IGFSP-2, and IGFBP-3 and have related these to maternal characteristics, fetal growth, and glycemia. The simultaneous measurement of GHBP and PGH has for the first time allowed calculation of the free component of PGH and correlation of the free component to indexes of fetal growth and other endocrine markers. PGH, free PGH, IGF-I, and IGF-II were substantially decreased in IUGR at 28-30 weeks gestation (K28) and 36-38 weeks gestation (K36). The mean concentration (+/-SEM) of total PGH increased significantly from K28 to K36 (30.0 +/- 2.2 to 50.7 +/- 6.2 ng/mL; n = 40), as did the concentration of free PGH (23.4 +/- 2.3 to 43.7 +/- 6.0 ng/mL; n = 38). The mean percentage of free PGH was significantly less in IUGR than in normal subjects (67% vs. 79%; P < 0.01). Macrosomia was associated with an increase in these parameters that did not reach statistical significance. Multiple regression analysis revealed that PGH/IGF-I and IGFBP-5 account for 40% of the variance in birth weight. IGFBP-3 showed a significant correlation with IGF-I, IGF-II, and free and total PGK at K28 and K36. Noninsulin-dependent diabetes mellitus patients had a lower mean percentage of free PGH (65%; P < 0.01), and insulin-dependent diabetics had a higher mean percentage of free PGH (87%; P < 0.01) than normal subjects. Mean postprandial glucose at K28 correlated positively with PGH and free PGH (consistent with the hyperglycemic action of GH). GHBP correlated negatively with both postprandial and fasting glucose. Although GHBP correlated negatively with PGH (r = -0.52; P
Resumo:
The three-dimensional solution structure of conotoxin TVIIA, a 30-residue polypeptide from the venom of the piscivorous cone snail Conus tulipa, has been determined using 2D H-1 NMR spectroscopy. TVIIA contains six cysteine residues which form a 'four-loop' structural framework common to many peptides from Conus venoms including the omega-, delta-, kappa-, and mu O-conotoxins. However, TVIIA does not belong to these well-characterized pharmacological classes of conotoxins, but displays high sequence identity with conotoxin GS, a muscle sodium channel blocker from Conus geographus. Structure calculations were based on 562 interproton distance restraints inferred from NOE data, together with 18 backbone and nine side-chain torsion angle restraints derived from spin-spin coupling constants. The final family of 20 structures had mean pairwise rms differences over residues 2-27 of 0.18 +/- 0.05 Angstrom for the backbone atoms and 1.39 +/- 0.33 Angstrom for all heavy atoms. The structure consists of a triple-stranded, antiparallel beta sheet with +2x, -1 topology (residues 7-9, 16-20 and 23-27) and several beta turns. The core of the molecule is formed by three disulfide bonds which form a cystine knot motif common to many toxic and inhibitory polypeptides. The global fold, molecular shape and distribution of amino-acid sidechains in TVIIA is similar to that previously reported for conotoxin GS, and comparison with other four-loop conotoxin structures provides further indication that TVIIA and GS represent a new and distinct subgroup of this structural family. The structure of TVIIA determined in this study provides the basis for determining a structure-activity relationship for these molecules and their interaction with target receptors.
Resumo:
Thirty steers were used in two pen experiments (Expts 1 and 2). and 27 of these in a third (Expt 3), to quantify their responses of hay intake, rumen ammonia nitrogen (RAN) concentrations, and liveweight to inputs of rumen soluble nitrogen (urea) and rumen undegradable protein (formaldehyde-treated casein; F-casein) when added to a basal diet of low quality hays. The hays were made From unimproved native pastures typical of those grazed by cattle in the subtropics of Australia and contained 7.8 g N/kg dry matter (DM) with coefficient of organic matter digestibility of 0.503 in Expts 1 and 2, and 5.2 g N/kg DM with a digestibility range from 0.385 to 0.448 in Expt 3. The steers (15 months old) were either Brahman (B), Hereford (H) or the F-1 Brahman x Hereford (BH) cross. Steers were offered supplementary minerals with the hays in each experiment. In Expt 1 (35 days) urea was sprayed on part of the hay, allowing for daily urea intakes (g/steer) of either 0, 5, 11, 16 or 26. In Expt 2 (42 days), F-casein was offered daily (g/steer) at either 0, 75, 150, 225 or 300 and in Expt 3 (56 days) discrete offerings were made of soluble casein (225 g/day), of urea (18 g/day) + F-casein (225 g/day) or of nil. There were significant linear effects of urea intake upon hay intake and liveweight change of steers. However, B steers had smaller increases in intake and liveweight change than did H steers, and B steers did not have a linear increase in RAN concentrations with increasing urea intake as did H and SH steers. In Expt 2 there were significant linear effects of F-casein supplements on hay intake and liveweight change of steers and a significant improvement in their feed conversion ratio (i.e. DM intake:liveweight change). The B steers did not differ from H and BH steers in liveweight change but had significantly lower hay intakes and non-significantly smaller increases in RAN with increasing F-casein intake. In Expt 3, hay intake of the steers increased with soluble casein (by 16.8 %) and with urea + F-casein (24.5 %). Only steers given urea + F-casein had a high RAN concentration (94 mg/l) and a high liveweight gain. The B steers had a liveweight loss and a lower hay intake than H or BH steers in Expt 3 but a higher RAN concentration. These studies have indicated the importance of the form and quantity of additional N required by cattle of differing breed types to optimize their feed intake and liveweight gain when offered low-N, low-digestible hays.
Resumo:
The reactivity of sera from patients with cervical cancer with the E7 protein of human papilloma virus type 16 (HPV16) was estimated using a novel non-radioactive immunoprecipitation assay and four established protein-and peptide-based immunoassays. Six of 14 sera from patients with cervical cancer and 1 of 10 sera from healthy laboratory staff showed repeated reactivity with E7 in at least one assay. Four of the 7 reactive sera were consistently reactive in more than one assay, but only one was reactive in all four assays. Following immunization with E7, 2 of 5 patients with cervical cancer had increased E7-specific reactivity, measurable in one or more assays. No single assay was particularly sensitive for E7 reactivity, or predictive of cervical cancer. Mapping of E7 reactivity to specific E7 peptides was unsuccessful, suggesting that natural or induced E7 reactivity in human serum is commonly directed to conformational epitopes of E7, These results suggest that each assay employed with is study measures a different aspect of E7 reactivity, and that various reactivities to E7 may manifest following HPV infection or immunization. This finding is of significance for monitoring of E7 immunotherapy and for serological screening for cervical cancer. Copyright (C) 2000 S.Karger, AG. Basel.
Resumo:
Normal Sprague-Dau ley rat mammary gland epithelial cells and mammary gland carcinomas induced by 2-amino-1 -methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen found in the diet, were examined for the expression of peroxisome proliferator-activated receptor alpha (PPAR alpha). PPAR alpha mRNA and protein was detected in normal and tumor tissue by reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. By quantitative RT-PCR, carcinomas had a 12-fold higher expression than control mammary glands, a statistically significant difference. PPAR alpha expression was examined in carcinomas and normal tissues from rats on high fat (23.5/% corn oil) and low fat (5% corn oil) diets. Although neither carcinomas, nor control tissues showed statistically significant differences between the two diet groups, PPAR alpha expression was the highest in carcinomas from rats on the high fat diet. The expression of PPAR alpha in normal mammary gland and its significant elevation in mammary gland carcinomas raises the possibility of its involvement in mammary gland physiology and pathophysiology. (C) 2000 Published by Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Within steroid receptor heterocomplexes the large tetraticopeptide repeat-containing immunophilins, cyclophilin 40 (CyP40), FKBP51, and FKBP52, target a common interaction site in heat shock protein 90 (HspSO) and act coordinately with HspSO to modulate receptor activity. The reversible nature of the interaction between the immunophilins and HspSO suggests that relative cellular abundance might be a key determinant of the immunophilin component within steroid receptor complexes. To investigate CyP40 gene regulation, we have isolated a fi-kilobase (kb) 5 ' -flanking region of the human gene and demonstrated that a similar to 50 base pair (bp) sequence adjacent to the transcription start site is essential for CyP40 basal expression. Three tandemly arranged Ets sites within this critical region were identified as binding elements for the multimeric Ets-related transcription factor, GA binding protein (GABP). Functional studies of this proximal promoter sequence, in combination with mutational analysis, confirmed these sites to be crucial for basal promoter function. Furthermore, overexpression of both GABP alpha and GABP beta subunits in Cos1 cells resulted in increased endogenous CyP40 mRNA levels. Significantly, a parallel increase in FKBP52 mRNA expression was not observed, highlighting an important difference in the mode of regulation of the CyP40 and FKBP52 genes. Our results identify GABP as a key regulator of CyP40 expression. GAFF is a common target of mitogen and stress-activated pathways and may integrate these diverse extracellular signals to regulate CyP40 gene expression.
Resumo:
The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautrophicum at 2.0 Angstrom resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta -strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta -sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis. (C) 2001 Academic Press.
Resumo:
In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/ DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with downregulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.
Resumo:
Recent findings from studies of two families have shown that mutations in the GABA(A)-receptor gamma2 subunit are associated with generalized epilepsies and febrile seizures. Here we describe a family that has generalized epilepsy with febrile seizures plus (GEFS(+)), including an individual with severe myoclonic epilepsy of infancy, in whom a third GABA(A)-receptor gamma2-subunit mutation was found. This mutation lies in the intracellular loop between the third and fourth transmembrane domains of the GABA(A)-receptor gamma2 subunit and introduces a premature stop codon at Q351 in the mature protein. GABA sensitivity in Xenopus laevis oocytes expressing the mutant gamma2(Q351X) subunit is completely abolished, and fluorescent-microscopy studies have shown that receptors containing GFP-labeled gamma2(Q351X) protein are retained in the lumen of the endoplasmic reticulum. This finding reinforces the involvement of GABA(A) receptors in epilepsy.
Resumo:
A synthetic Synechocystis sp. PCC6803 DnaB split mini-intein gene was constructed for the in vivo cyclization of recombinant proteins expressed in Escherichia coli. The system was used to cyclize the NH2-terminal domain of E. coli DnaB, the structure of which had been determined previously by NMR spectroscopy. Cyclization was found to proceed efficiently, with little accumulation of precursor, and the product was purified in high yield. The solution structure of cyclic DnaB-N is not significantly different from that of linear DnaB-N and it unfolds reversibly at temperatures similar to14 degreesC higher. Improved hydrogen bonding was observed in the first and last helices, and the length of the last helix was increased, while the 9-amino acid linker used to join the NH2 and COOH termini was found to be highly mobile. The measured thermodynamic stabilization of the structure (DeltaDeltaG approximate to 2 kcal/mol) agrees well with the value estimated from the reduced conformational entropy in the unfolded form. Simple polymer theory can be used to predict likely free energy changes resulting from protein cyclization and how the stabilization depends on the size of the protein and the length of the linker used to connect the termini.
Resumo:
We have studied the mechanism by which an acidic domain (amino acids 515-583) of the aromatic hydrocarbon receptor (AhR) transactivates a target gene. Studies with glutathione S-transferase fusion proteins demonstrate that the wild-type acidic domain associates in vitro with Myb-binding protein la, whereas a mutant domain (F542A, 1569A) does not. AhR-defective cells reconstituted with an AhR containing the wild-type acidic domain exhibit normal AhR function; however, cells reconstituted with an AhR containing the mutant acidic domain do not function normally. Transient transfection of Myb-binding protein la into mouse hepatoma cells is associated with augmentation of AhR-dependent gene expression. Such augmentation does not occur when Myb-binding protein la is transfected into AhR-defective cells that have been reconstituted with an AhR that lacks the acidic domain. We infer that 1) Myb-binding protein la associates with AhR, thereby enhancing transactivation, and 2) the presence of AhR's acidic domain is both necessary and sufficient for Myb-binding protein la to increase AhR-dependent gene expression.
Resumo:
A flow chamber was used to impart a steady laminar shear stress on a recombinant Chinese hamster ovary (CHO) cell line expressing human growth hormone (hGH). The cells were subjected to shear stress ranging from 0.005 to 0.80 N m(-2). The effect of shear stress on the cell specific glucose uptake, cell specific hGH, and lactate productivity rates were calculated. No morphological changes to the cells were observed over the range of shear stresses examined. When the cells were subjected to 0.10 N m(-2) shear in protein-free media without Pluronic F-68, recombinant protein production ceased with no change in cell morphology, whereas control cultures were expressing hGH at 0.35 mug/10(6) cells/h. Upon addition of the shear protectants, Pluronic F-68 (0.2% [w/v]) or fetal bovine serum (1.0% [v/v] FBS), the productivity of the cells was restored. The effect of increasing shear stress on the cells in protein-free medium containing Pluronic F-68 was also investigated. Cell specific metabolic rates were calculated for cells under shear stress and for no-shear control cultures performed in parallel, with shear stress rates expressed as a percentage of those obtained for control cultures. Upon increasing shear from 0.005 to 0.80 N m(-2), the cell specific hGH productivity decreased from 100% at 0.005 N m(-2) to 49% at 0.80 N m(-2) relative to the no-shear control. A concurrent increase in the glucose uptake rate from 115% at 0.01 N m(-2) to 142% at 0.80 N m(-2), and decreased lactate productivity from 92% to 50%, revealed a change in the yield of products from glucose compared with the static control. It was shown that shear stress, at sublytic levels in medium containing Pluronic F-68, could decrease hGH specific productivity. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Percutaneous transluminal coronary angioplasty is a frequently used interventional technique to reopen arteries that have narrowed because of atherosclerosis. Restenosis, or renarrowing of the artery shortly after angioplasty, is a major limitation to the success of the procedure and is due mainly to smooth muscle cell accumulation in the artery wall at the site of balloon injury. In the present study, we demonstrate that the antiangiogenic sulfated oligosaccharide, PI-88, inhibits primary vascular smooth muscle cell proliferation and reduces intimal thickening 14 days after balloon angioplasty of rat and rabbit arteries. PI-88 reduced heparan sulfate content in the injured artery wall and prevented change in smooth muscle phenotype. However, the mechanism of PI-88 inhibition was not merely confined to the antiheparanase activity of this compound. PI-88 blocked extracellular signal-regulated kinase-1/2 (ERK1/2) activity within minutes of smooth muscle cell injury. It facilitated FGF-2 release from uninjured smooth muscle cells in vitro, and super-released FGF-2 after injury while inhibiting ERK1/2 activation. PI-88 inhibited the decrease in levels of FGF-2 protein in the rat artery wall within 8 minutes of injury. PI-88 also blocked injury-inducible ERK phosphorylation, without altering the clotting time in these animals. Optical biosensor studies revealed that PI-88 potently inhibited (K-i 10.3 nmol/L) the interaction of FGF-2 with heparan sulfate. These findings show for the first time the capacity of this sulfated oligosaccharide to directly bind FGF-2, block cellular signaling and proliferation in vitro, and inhibit injury-induced smooth muscle cell hyperplasia in two animal models. As such, this study demonstrates a new role for PI-88 as an inhibitor of intimal thickening after balloon angioplasty. The full text of this article is available online at http://www.circresaha.org.
Resumo:
Continuous NMR T-2 relaxation measurements were carried out on seven rabbit longissimus muscle samples in the period from 25 min to 28 h post-mortem at 200 MHz for H-1. To display differences in post-mortern pH progress and extent of changes in water characteristics during conversion of muscle to meat, three of the seven animals were pre-slaughter injected with adrenaline (0.5 mg/kg live weight 4 h before sacrifice) to differentiate muscle glycogen stores at the time of slaughter. Distributed analysis of T-2 data displayed clear differences in the characteristics of the various transverse relaxation components dependent on progress in pH, as did the water-holding capacity of samples 24 h postmortem. This reveals a pronounced effect of the progressive change in pH on the subsequent development in physical/chemical states of water during the conversion of muscle to meat. Finally, the relaxation characteristics are discussed in relation to supposed post-mortem processes of protein denaturation.