1000 resultados para Transfer
Resumo:
A new and synthetically versatile strategy has been developed for the phosphorescence color tuning of cyclometalated iridium phosphors by simple tailoring of the phenyl ring of ppy (Hppy=2-phenylpyridine) with various main-group moieties in [Ir(ppy-X)(2)(acac)] (X=B(Mes)(2), SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph). This can be achieved by shifting the charge-transfer character from the pyridyl groups in some traditional iridium ppy-type complexes to the electron-withdrawing main-group moieties and these assignments were supported by theoretical calculations.
Resumo:
We describe a facile one-pot process to synthesize Ag nanoplates by reducing silver nitrate with 3,3',5,5'-tetramethylbenzidine (TMB) at room temperature. The silver nanoplates were highly oriented single crystals with (111) planes as the basal planes. TMB can be readily oxidized to charge-transfer (CT) complex between TMB, as a donor, and (TMB)(2+), as an acceptor. The pi-pi interaction of the neutral amine (TMB) and diiminium structure (dication, TMB2+) result in the formation of one-dimensional CT complex nanofiber.
Resumo:
Ligand-to-metal charge transfer energies of YBO3:Eu have been investigated from the chemical bond viewpoint. The chemical bond parameters, such as the covalency, the polarizability of the chemical bond volume, and the presented charge of the ligands in the chemical bond have been quantitatively determined based on the dielectric theory of complex crystal. We calculated the environmental factor (h(e)), which is the major factor influencing the charge transfer energy in the compounds. The calculated results show that the suitable group space of YBO3 is C2/c. The method provides us with a supplementary tool to judge the proper structure when the structure of the crystal has many uncertain space groups.
Resumo:
Bulk and nano-materials Sr2CeO4 were prepared by solid-state reaction and sol-gel technique, respectively. Photoluminescence shows that luminescence has the characteristic of a ligand-to-metal charge transfer (CT) emission. Compared with bulk Sr2CeO4, the nano-material exhibits stronger emission intensity, longer decay time, and higher CT excitation energy. Three CT excitation peaks were observed in both bulk and nano samples.
Resumo:
Tb(1-x)BO3:xEu(3+) (x = 0-1) microsphere phosphors have been successfully prepared by a simple hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as lifetimes were used to characterize the samples.
Resumo:
A series of D-pi-A-pi-D type of near-infrared (NIR) fluorescent compounds based on benzobis(thia diazole) and its selenium analogues were synthesized and fully characterized by H-1 and C-13 NMR, high-resolution mass spectrometry, and elemental analysis. The absorption fluorescence, and electrochemical properties were also studied. Photoluminescence of these chromophores ranges from 900 to 1600 nm and their band gaps are between 1.19 and 0.56 eV.
Resumo:
Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were significantly improved by assistant Forster energy transfer. The coguest-host system was composed of an electron transport organic molecule tris(8-hydroxyquinoline) aluminum (Alq(3)) as host and a green fluorescent dye (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano[6,7,8-ij]quinolizin-11-one) (C545T) as assistant dopant codoped with the guest red dye DCJTB as emitter in a matrix of polystyrene (PS).
Resumo:
Both the behavior and the general key factors for assembling flexible SWNT films at the water/oil interface were investigated; the electron transfer, one of the most fundamental chemical processes, at the SWNT-sandwiched water/oil interface was also firstly illustrated using scanning electrochemical microscopy.
Resumo:
Horseradish peroxidase (HRP) was incorporated into multiwalled carbon nanotube/thionine/Au (MTAu) composite film by electrostatic interactions between positively charged HRP and negatively charged MTAu composite. The results of electrochemical impedance spectroscopy (EIS) confirmed adsorption of HRP on the surface of MTAu modified GC electrode.
Resumo:
Amphiphilic biodegradable star-shaped polymer was conveniently prepared by the Sn(Oct)(2)-catalyzed ring opening polymerization of c-caprolactone (CL) with hyperbranched poly(ester amide) (PEA) as a macroinitiator. Various monomer/initiator ratios were employed to vary the length of the PCL arms. H-1 NMR and FTIR characterizations showed the successful synthesis of star polymer with high initiation efficiency. SEC analysis using triple detectors, RI, light scattering, and viscosity confirmed the controlled manner of polymerization and the star architecture.
Resumo:
Well-defined polyacrylonitrile with a higher number-average molecular weight (R.) up to 200,000 and a lower polydispersity index (PDI, 1.7-2.0) was firstly obtained via reversible addition-fragmentation chain transfer (RAFT) process. This was achieved by selecting a stable, easy way to prepare disulfide compound intermediates including bis(thiobenzoyl) disulfide (BTBDS) and bis(thiophenylacetoyl) disulfide (BTPADS) to react with azobis(isobutyronitrile) to directly synthesize RAFT agents in situ.
Resumo:
It was found that silicon dioxide (SiO2) nanoparticles modified onto glassy carbon (GC) electrode exhibited a dramatic promotion on the direct electron transfer of Cytochrome c (Cyt c). The corresponding mechanism was discussed based on the electrochemical characteristics and a spatial geometrical model of the bifunctional structure. The model could offer insight to the study of biosensors and bioreactors without chemical mediator and serve as a basis for their fabrication. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Luminescent properties of LaMgAl11O19:Tb, Mn phosphors were investigated. It was observed that the energy distributions of the Tb3+-emission bands associated with transitions from the D-5(3) and D-5(4) levels to F-7(J) depend on the Tb3+-concentration, which is due to the cross-relaxation between Tb 31 ions. The emission band at about 516 nm is attributed to the T-4(1) -> (6)A(1) transition of the Mn2+ ions. We observed an energy transfer from the Tb 3, to Mn2+ ions in LaMgAl11O19:Tb, Mn.
Resumo:
BACKGROUND: Thermodynamics and kinetics data are both important to explain the extraction property. In order to develop a novel separation technology superior to current extraction systems, many promising extractants have been developed including calixarene carboxylic acids. The extraction thermodynamics behavior of calix[4]arene carboxylic acids has been reported extensively. In this study, the mass transfer kinetics of neodymium(III) and the interfacial behavior of calix[4]arene carboxylic acid were investigated.
Resumo:
In this paper, a quantum chemistry method was used to investigate the effect of different sizes of substituted phenanthrolines on absorption, energy transfer, and the electroluminescent performance of a series of Eu(TTA)(3)L (L = [1,10] phenanthroline (Phen), Pyrazino[2,3-f][1,10]phenanthroline (PyPhen), 2-methylprrazino[2,3-f][1,10] phenanthroline(MPP), dipyrido[3,2-a:2',3'-c]phenazine(DPPz), 11-methyldipyrido[3,2-a:2',3'c]phenazine(MDPz), 11.12-dimethyldipyrido[3,2-a:2',3'-c]phenazine(DDPz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (BDPz)) complexes. Absorption spectra calculations show that different sizes of secondary ligands have different effects on transition characters, intensities, and absorption peak positions.