925 resultados para Transcription Factors -- chemistry -- genetics -- metabolism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of gene expression by miRNAs has been widely investigated in different species and cell types. Following a probabilistic rather than a deterministic regimen, the action of these short nucleotide sequences on specific genes depends on intracellular concentration,which in turn reflects the balance between biosynthesis and degradation. Recent studies have described the involvement of XRN2, an exoribonuclease, in miRNA degradation and PAPD4, an atypical poly(A) polymerase, in miRNA stability. Herein, we examined the expression of XRN2 and PAPD4 in developing and adult rat hippocampi. Combining bioinformatics and real-time PCR,we demonstrated that XRN2 and PAPD4 expression is regulated by the uncorrelated action of transcription factors, resulting in distinct gene expression profiles during development. Analyses of nuclei position and nestin labeling revealed that both proteins progressively accumulated during neuronal differentiation, and that they are weakly expressed in immature neurons and absent in glial and endothelial cells. Despite the differences in subcellular localization, both genes were concurrently identified within identical neuronal subpopulations, including specific inhibitory interneurons. Thus, we cope with a singular circumstance in biology: an almost complete intersected expression of functional-opposed genes, reinforcing that their antagonistically driven actions on miRNAs “make sense” if simultaneously present at the same cells. Considering that the transcriptome in the nervous system is finely tuned to physiological processes, it was remarkable that miRNA stability-related genes were oncurrently identified in neurons that play essential roles in cognitive functions such as memory and learning. In summary, this study reveals a possible new mechanism for the control of miRNA expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac morphogenesis is a complex process governed by evolutionarily conserved transcription factors and signaling molecules. The Drosophila cardiac tube is linear, made of 52 pairs of cardiomyocytes (CMs), which express specific transcription factor genes that have human homologues implicated in Congenital Heart Diseases (CHDs) (NKX2-5, GATA4 and TBX5). The Drosophila cardiac tube is linear and composed of a rostral portion named aorta and a caudal one called heart, distinguished by morphological and functional differences controlled by Hox genes, key regulators of axial patterning. Overexpression and inactivation of the Hox gene abdominal-A (abd-A), which is expressed exclusively in the heart, revealed that abd-A controls heart identity. The aim of our work is to isolate the heart-specific cisregulatory sequences of abd-A direct target genes, the realizator genes granting heart identity. In each segment of the heart, four pairs of cardiomyocytes (CMs) express tinman (tin), homologous to NKX2-5, and acquire strong contractile and automatic rhythmic activities. By tyramide amplified FISH, we found that seven genes, encoding ion channels, pumps or transporters, are specifically expressed in the Tin-CMs of the heart. We initially used online available tools to identify their heart-specific cisregutatory modules by looking for Conserved Non-coding Sequences containing clusters of binding sites for various cardiac transcription factors, including Hox proteins. Based on these data we generated several reporter gene constructs and transgenic embryos, but none of them showed reporter gene expression in the heart. In order to identify additional abd-A target genes, we performed microarray experiments comparing the transcriptomes of aorta versus heart and identified 144 genes overexpressed in the heart. In order to find the heart-specific cis-regulatory regions of these target genes we developed a new bioinformatic approach where prediction is based on pattern matching and ordered statistics. We first retrieved Conserved Noncoding Sequences from the alignment between the D.melanogaster and D.pseudobscura genomes. We scored for combinations of conserved occurrences of ABD-A, ABD-B, TIN, PNR, dMEF2, MADS box, T-box and E-box sites and we ranked these results based on two independent strategies. On one hand we ranked the putative cis-regulatory sequences according to best scored ABD-A biding sites, on the other hand we scored according to conservation of binding sites. We integrated and ranked again the two lists obtained independently to produce a final rank. We generated nGFP reporter construct flies for in vivo validation. We identified three 1kblong heart-specific enhancers. By in vivo and in vitro experiments we are determining whether they are direct abd-A targets, demonstrating the role of a Hox gene in the realization of heart identity. The identified abd-A direct target genes may be targets also of the NKX2-5, GATA4 and/or TBX5 homologues tin, pannier and Doc genes, respectively. The identification of sequences coregulated by a Hox protein and the homologues of transcription factors causing CHDs, will provide a mean to test whether these factors function as Hox cofactors granting cardiac specificity to Hox proteins, increasing our knowledge on the molecular mechanisms underlying CHDs. Finally, it may be investigated whether these Hox targets are involved in CHDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological complexity of NGF action is achieved by binding two distinct Neurotrophin receptors, TrkA and p75NTR. While several reports have provided lines of evidence on the interaction between TrkA and p75NTR at the plasma membrane, much fewer data are available on the consequence of such an interaction in terms of intracellular signaling. In this study, we have focused on how p75NTR may affect TrkA downstream signaling with respect to neuronal differentiation. Here, we have shown that cooperation between p75NTR and TrkA results in an increased NGF-mediated TrkA autophosphorylation, leads to a sustained activation of ERK1/2 and accelerates neurite outgrowth. Interestingly, neurite outgrowth is concomitant with a selective enhancement of the AP-1 activity and the transcriptional activation of genes such as GAP-43 and p21(CIP/WAF), known to be involved in the differentiation process. Collectively, our results unveil a functional link between the specific expression profile of neurotrophin receptors in neuronal cells and the NGF-mediated regulation of the differentiation process possibly through a persistent ERKs activation and the selective control of the AP-1 activity. In our studies we discuss the functional role of the neurotrophin receptor p75NTR and TrkA in a ligand-dependent signal transduction. It is known that p75NTR is also involved in the mediation of cell death ligand dependent. Here we show for the first time that the membrane receptor p75NTR, upon binding to b- Amyloid (Ab) peptide, is able to transduce a cytotoxic signal through a mechanism very similar to the one adopted by Tumor Necrosis Factor Receptor 1 (TNFR1), when activated by TNFa. We define that in neuroblastoma cell line Ab cytotoxicity signals through a pathway depending on p75NTR death domain (DD), mostly through some specific conserved residues. We identified that TRADD is the first interactor recruiting to the membrane and activates JNK and NF-kB transcription factors. Since Ab is defined as the most important aetiologic element associated with the Alzheimer’s Disease (AD), characterization of the mechanism involved in the mediation of the neurodegeneration can suggest also new therapeutic approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large body of literature documents in both mice and Drosophila the involvement of Insulin pathway in growth regulation, probably due to its role in glucose and lipid import, nutrient storage, and translation of RNAs implicated in ribosome biogenesis (Vanhaesebroeck et al. 2001). Moreover several lines of evidence implicate this pathway as a causal factor in cancer (Sale, 2008; Zeng and Yee 2007; Hursting et al., 2007; Chan et al., 2008). With regards to Myc, studies in cell culture have implied this family of transcription factors as regulators of the cell cycle that are rapidly induced in response to growth factors. Myc is a potent oncogene, rearranged and overexpressed in a wide range of human tumors and necessary during development. Its conditional knock-out in mice results in reduction of body weight due to defect in cell proliferation (Trumpp et al. 2001). Evidence from in vivo studies in Drosophila and mammals suggests a critical function for myc in cell growth regulation (Iritani and Eisenman 1999; Johnston et al. 1999; Kim et al. 2000; de Alboran et al. 2001; Douglas et al. 2001). This role is supported by our analysis of Myc target genes in Drosophila, which include genes involved in RNA binding, processing, ribosome biogenesis and nucleolar function (Orain et al 2003, Bellosta et al., 2005, Hulf et al, 2005). The fact that Insulin signaling and Myc have both been associated with growth control suggests that they may interact with each other. However, genetic evidence suggesting that Insulin signaling regulates Myc in vivo is lacking. In this work we were able to show, for the first time, a direct modulation of dMyc in response to Insulin stimulation/silencing both in vitro and in vivo. Our results suggest that dMyc up-regulation in response to DILPs signaling occurs both at the mRNA and potein level. We believe dMyc protein accumulation after Insulin signaling activation is conditioned to AKT-dependent GSK3β/sgg inactivation. In fact, we were able to demonstate that dMyc protein stabilization through phosphorylation is a conserved feature between Drosophila and vertebrates and requires multiple events. The final phosphorylation step, that results in a non-stable form of dMyc protein, ready to be degraded by the proteasome, is performed by GSK3β/sgg kinase (Sears, 2004). At the same time we demonstrated that CKI family of protein kinase are required to prime dMyc phosphorylation. DILPs and TOR/Nutrient signalings are known to communicate at several levels (Neufeld, 2003). For this reason we further investigated TOR contribution to dMyc-dependent growth regulation. dMyc protein accumulates in S2 cells after aminoacid stimulation, while its mRNA does not seem to be affected upon TORC1 inhibition, suggesting that the Nutrient pathway regulates dMyc mostly post-transcriptionally. In support to this hypothesis, we observed a TORC1-dependent GSK3β/sgg inactivation, further confirming a synergic effect of DILPs and Nutrients on dMyc protein stability. On the other hand, our data show that Rheb but not S6K, both downstream of the TOR kinase, contributes to the dMyc-induced growth of the eye tissue, suggesting that Rheb controls growth independently of S6K.. Moreover, Rheb seems to be able to regulate organ size during development inducing cell death, a mechanism no longer occurring in absence of dmyc. These observations suggest that Rheb might control growth through a new pathway independent of TOR/S6K but still dependent on dMyc. In order to dissect the mechanism of dMyc regulation in response to these events, we analyzed the relative contribution of Rheb, TOR and S6K to dMyc expression, biochemically in S2 cells and in vivo in morphogenetic clones and we further confirmed an interplay between Rheb and Myc that seems to be indipendent from TOR. In this work we clarified the mechanisms that stabilize dMyc protein in vitro and in vivo and we observed for the first time dMyc responsiveness to DILPs and TOR. At the same time, we discovered a new branch of the Nutrient pathway that appears to drive growth through dMyc but indipendently from TOR. We believe our work shed light on the mechanisms cells use to grow or restrain growth in presence/absence of growth promoting cues and for this reason it contributes to understand the physiology of growth control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myc is a transcription factor that can activate transcription of several hundreds genes by direct binding to their promoters at specific DNA sequences (E-box). However, recent studies have also shown that it can exert its biological role by repressing transcription. Such studies collectively support a model in which c-Myc-mediated repression occurs through interactions with transcription factors bound to promoter DNA regions but not through direct recognition of typical E-box sequences. Here, we investigated whether N-Myc can also repress gene transcription, and how this is mechanistically achieved. We used human neuroblastoma cells as a model system in that N-MYC amplification/over-expression represents a key prognostic marker of this tumour. By means of transcription profile analyses we could identify at least 5 genes (TRKA, p75NTR, ABCC3, TG2, p21) that are specifically repressed by N-Myc. Through a dual-step-ChIP assay and genetic dissection of gene promoters, we found that N-Myc is physically associated with gene promoters in vivo, in proximity of the transcription start site. N-Myc association with promoters requires interaction with other proteins, such as Sp1 and Miz1 transcription factors. Furthermore, we found that N-Myc may repress gene expression by interfering directly with Sp1 and/or with Miz1 activity (i.e. TRKA, p75NTR, ABCC3, p21) or by recruiting Histone Deacetylase 1 (Hdac1) (i.e. TG2). In vitro analyses show that distinct N-Myc domains can interact with Sp1, Miz1 and Hdac1, supporting the idea that Myc may participate in distinct repression complexes by interacting specifically with diverse proteins. Finally, results show that N-Myc, through repressed genes, affects important cellular functions, such as apoptosis, growth, differentiation and motility. Overall, our results support a model in which N-Myc, like c-Myc, can repress gene transcription by direct interaction with Sp1 and/or Miz1, and provide further lines of evidence on the importance of transcriptional repression by Myc factors in tumour biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we elucidate the role of polyunsaturated fatty acids (PUFAs) in the prevention of cardiovascular diseases, focusing the attention on their role in the modulation of acyl composition of cell lipids and of gene expression. Regarding this latter mechanism, the effectiveness of PUFAs as activators of two transcriptional factors, SREBPs and PPARs, have been considered. Two different model system have been used: primary cultures of neonatal rat cardiomyocytes and an human hepatoma cell line (HepG2). Cells have been supplemented with different PUFAs at physiological concentration, and special attention has been devoted to the main n-3 PUFAs, EPA and DHA. PUFAs influence on global gene expression in cardiomyocytes has been evaluated using microarray technique. Furthermore, since it is not fully elucidated which transcription factors are involved in this modulation in the heart, expression and activation of the three different PPAR isoforms have been investigated. Hepatocytes have been used as experimental model system in the evaluation of PUFAs effect on SREBP activity. SREBPs are considered the main regulator of cholesterol and triglyceride synthesis, which occur mainly in the liver. In both experimental models the modification of cell lipid fatty acid composition subsequent to PUFAs supplementation has been evaluated, and related to the effects observed at molecular level. The global vision given by the obtained results may be important for addressing new researches and be useful to educators and policy makers in setting recommendations for reaching optimal health through good nutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. One of the phenomena observed in human aging is the progressive increase of a systemic inflammatory state, a condition referred to as “inflammaging”, negatively correlated with longevity. A prominent mediator of inflammation is the transcription factor NF-kB, that acts as key transcriptional regulator of many genes coding for pro-inflammatory cytokines. Many different signaling pathways activated by very diverse stimuli converge on NF-kB, resulting in a regulatory network characterized by high complexity. NF-kB signaling has been proposed to be responsible of inflammaging. Scope of this analysis is to provide a wider, systemic picture of such intricate signaling and interaction network: the NF-kB pathway interactome. Methods. The study has been carried out following a workflow for gathering information from literature as well as from several pathway and protein interactions databases, and for integrating and analyzing existing data and the relative reconstructed representations by using the available computational tools. Strong manual intervention has been necessarily used to integrate data from multiple sources into mathematically analyzable networks. The reconstruction of the NF-kB interactome pursued with this approach provides a starting point for a general view of the architecture and for a deeper analysis and understanding of this complex regulatory system. Results. A “core” and a “wider” NF-kB pathway interactome, consisting of 140 and 3146 proteins respectively, were reconstructed and analyzed through a mathematical, graph-theoretical approach. Among other interesting features, the topological characterization of the interactomes shows that a relevant number of interacting proteins are in turn products of genes that are controlled and regulated in their expression exactly by NF-kB transcription factors. These “feedback loops”, not always well-known, deserve deeper investigation since they may have a role in tuning the response and the output consequent to NF-kB pathway initiation, in regulating the intensity of the response, or its homeostasis and balance in order to make the functioning of such critical system more robust and reliable. This integrated view allows to shed light on the functional structure and on some of the crucial nodes of thet NF-kB transcription factors interactome. Conclusion. Framing structure and dynamics of the NF-kB interactome into a wider, systemic picture would be a significant step toward a better understanding of how NF-kB globally regulates diverse gene programs and phenotypes. This study represents a step towards a more complete and integrated view of the NF-kB signaling system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Chemokin 'Monocyte Chemoattractant Protein-1' (MCP-1) spielt bei inflammatorischen Erkrankungen eine wesentliche Rolle. Verschiedene Zelltypen produzieren MCP-1. Es interessierte, welche Stimuli in Monozyten MCP-1 induzieren können und welche Signaltransduktionskaskaden daran beteiligt sind. Darüber hinaus sollte die Rolle einzelner Transkriptionsfaktoren und Promotorregionen des MCP-1-Gens untersucht werden.Komponenten Gram-positiver und -negativer Bakterien, Phorbolester und Substanzen, die die intrazelluläre Calciumkonzentration erhöhen, induzierten die MCP-1-Expression in einer humanen myelomonozytären Zellinie (THP-1) und in frisch isolierten Monozyten. Die mit Lipopolysaccharid (LPS)-induzierte MCP-1-Expression war stark von der MAPK/ERK-Kinase (MEK)-1/-2 und von I-kappaB Kinasen beziehungsweise NF-kappaB abhängig, dagegen scheinen Calcineurin, Calmodulinkinasen und die 'Mitogen-Activated Protein Kinase' p38 keine entscheidende Rolle zu spielen. Die Thapsigargin (TG)-induzierte MCP-1-Bildung durch Erhöhung der intrazellulären Calciumkonzentration war zusätzlich von Calcineurin und Calmodulinkinasen abhängig. Als nukleäre Transkriptionsfaktoren wurden bei der LPS-Stimulation NF-kappaB sowie AP-1 und zusätzlich NF-ATc3 bei Stimulation durch TG nachgewiesen. Die Untersuchung des MCP-1-Promotors konnte eine Bindung von NF-kappaB- und AP-1-Mitglieder an eine bislang nicht untersuchte distale Region und eine AP-1-Bindung an eine proximale Region nachweisen. Die Ergebnisse lassen den Schluß zu, daß die Aktivierung der MCP-1-Expression durch verschiedene Stimuli unter Beteiligung teilweise unterschiedlicher Signaltransduktionswege abläuft und sowohl eine proximale als auch eine distale Promotorregion des MCP-1-Gens daran beteiligt ist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Untersuchung zur Pathogenese der 'Bypass graft disease' Histomorphologische Untersuchungen und in vitro Zellkulturanalysen bilden die Grundlage für Fortschritte im Verständnis der pathologischen Mechanismen der aortokoronaren 'Bypass graft disease'. In der vorliegenden Arbeit wurde die pathomorphologische Veränderung der Gefäßanatomie im Verlauf der 'Bypass graft disease' an Hand histologischer Präparate explantierter humaner venöser Bypass-Läsionen analysiert. Erstmalig wurde ein histomorphologisches Klassifizierungsschema (Typ I - Typ III) beschrieben. Morphometrische Analysen zeigten, dass die Fläche der Neointima und Media im Verlauf der pathologischen Umgestaltung der Bypass-Architektur (Typ I zu Typ III) deutlich zunimmt. Bestimmungen der Zelldichte dokumentierten eine deutlich größere Zellzahl in allen Gefäßwandschichten der Bypass-Läsionen bei der Gegenüberstellung mit einer Kontrollgruppe nativer Venen, wobei im Verlauf der 'Bypass graft disease' (Typ I zu Typ III) eine Abnahme der Zelldichte zu beobachten war. Erstmalig durchgeführte Untersuchungen zur Proliferationsaktivität in aortokoronaren Bypass-Läsionen im Vergleich zu nativen Gefäßen präsentierten eine deutlich höhere zelluläre Proliferation in den Bypass-Präparaten. Diese war am stärksten in Typ III Läsionen ausgeprägt. Expressionsstudien im in vitro Zellkulturmodellsystem identifiziereten die homodimeren Isotypen (AA / BB) des Wachstumsfaktors PDGF als Stimulatoren der Transkriptionsfaktoren c-fos und c-myc in primärkultivierten humanen Muskelzellen der Aorta.