922 resultados para Trafficking
Resumo:
DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.
Resumo:
Background: The direction of cytokine secretion from polarized cells determines the cytokine's cellular targets. Leukemia inhibitory factor LIF) belongs to the interleukin-6 IL-6) family of cytokines and signals through LIFR/gp130. Three factors which may regulate the direction of LIF secretion were studied: the site of stimulation, signal peptides, and expression levels. Stimulation with IL-1 beta is known to promote IL-6 secretion from the stimulated membrane apical or basolateral) in the human intestinal epithelial cell line Caco-2. Since LIF is related to IL-6, LIF secretion was also tested in Caco-2 following IL-1 beta stimulation. Signal peptides may influence the trafficking of LIF. Two isoforms of murine LIF, LIF-M and LIF-D, encode different signal peptides which have been associated with different locations of the mature protein in fibroblasts. To determine the effect of the signal peptides on LIF secretion, secretion levels were compared in Madin-Darby canine kidney MDCK) clones which expressed murine LIF-M or LIF-D or human LIF under the control of an inducible promoter. Low and high levels of LIF expression were also compared since saturation of the apical or basolateral route would reveal specific transporters for LIF. Results: When Caco-2 was grown on permeable supports, LIF was secreted constitutively with around 40% secreted into the apical chamber. Stimulation with IL-1 beta increased LIF production. After treating the apical surface with IL-1 beta, the percentage secreted apically remained similar to the untreated, whereas, when the cells were stimulated at the basolateral surface only 20% was secreted apically. In MDCK cells, an endogenous LIF-like protein was detected entirely in the apical compartment. The two mLIF isoforms showed no difference in their secretion patterns in MDCK. Interestingly, about 70% of murine and human LIF was secreted apically from MDCK over a 400-fold range of expression levels within clones and a 200,000-fold range across clones. Conclusion: The site of stimulation affected the polarity of LIF secretion, while, signal peptides and expression levels did not. Exogenous LIF is transported in MDCK without readily saturated steps.
Resumo:
Tetraspanins are thought to exert their biological function(s) by co-ordinating the lateral movement and trafficking of associated molecules into tetraspanin-enriched microdomains. A second four-TM (transmembrane) domain protein family, the Claudin superfamily, is the major structural component of cellular TJs (tight junctions). Although the Claudin family displays low sequence homology and appears to be evolutionarily distinct from the tetraspanins, CD81 and Claudin-1 are critical molecules defining HCV (hepatitis C virus) entry; we recently demonstrated that CD81-Claudin-1 complexes have an essential role in this process. To understand the molecular basis of CD81-Claudin-1 complex formation, we produced and purified milligram quantities of full-length CD81 and Claudin-1, alone and in complex, in both detergent and lipid contexts. Structural characterization of these purified proteins will allow us to define the mechanism(s) underlying virus-cell interactions and aid the design of therapeutic agents targeting early steps in the viral life cycle.
Resumo:
The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-coupled receptor (GPCR) function in several ways. RAMPs can alter their pharmacology and signalling as well as the trafficking of these receptors to and from the cell surface. Accordingly, RAMPs may be exploited as drug targets, offering new opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. For example, several small molecule antagonists of RAMP1/ calcitonin receptor-like receptor complexes, which block the actions of the neuropeptide calcitonin gene-related peptide are in development for the treatment of migraine headache.
Resumo:
In our attempts to thwart the unwanted attentions of microbes by prophylactic and therapeutic vaccination, the knowledge of interactions at the molecular level may prove to be an invaluable asset. This article examines how particulate delivery systems such as liposomes and polymer microspheres can be applied in the light of recent advances in immunological understanding. Some of the biological interactions of these delivery systems are discussed with relevance for antigen trafficking and molecular pathways of immunogenicity and emphasis on the possible interaction of liposomal components. In particular, traditional concepts such as antigen protection, delivery to antigen presenting cells and depot formation remain important aspects, whilst the inclusion of selected co-adjuvants and enhanced delivery of these moieties in conjunction with antigen now has a firm rationale. © 2006 The Authors.
Resumo:
The yeast gene fab1 and its mammalian orthologue Pip5k3 encode the phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinases Fab1p and PIKfyve, respectively, enzymes that generates phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)]. A shared feature of fab1Delta yeast cells and mammalian cells overexpressing a kinase-dead PIKfyve mutant is the formation of a swollen vacuolar phenotype: a phenotype that is suggestive of a conserved function for these enzymes and their product, PtdIns(3,5)P(2), in the regulation of endomembrane homeostasis. In the current study, fixed and live cell imaging has established that, when overexpressed at low levels in HeLa cells, PIKfyve is predominantly associated with dynamic tubular and vesicular elements of the early endosomal compartment. Moreover, through the use of small interfering RNA, it has been shown that suppression of PIKfyve induces the formation of swollen endosomal structures that maintain their early and late endosomal identity. Although internalisation, recycling and degradative sorting of receptors for epidermal growth factor and transferrin was unperturbed in PIKfyve suppressed cells, a clear defect in endosome to trans-Golgi-network (TGN) retrograde traffic was observed. These data argue that PIKfyve is predominantly associated with the early endosome, from where it regulates retrograde membrane trafficking to the TGN. It follows that the swollen endosomal phenotype observed in PIKfyve-suppressed cells results primarily from a reduction in retrograde membrane fission rather than a defect in multivesicular body biogenesis.
Resumo:
The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.