988 resultados para Tissue expansion
Resumo:
The regulation of CD4 T cell numbers during an immune response should take account of the amount of antigen (Ag), the initial frequency of Ag-specific T cells, the mix of naive versus experienced cells, and (ideally) the diversity of the repertoire. Here we describe a novel mechanism of T cell regulation that potentially deals with all of these parameters. We found that CD4 T cells establish a negative feedback loop by capturing their cognate MHC/peptide complexes from Ag-presenting cells and presenting them to Ag-experienced CD4 T cells, thereby inhibiting their recruitment into the response while allowing recruitment of naive T cells. The inhibition is Ag specific, begins at day 2 (long before Ag disappearance), and cannot be overcome by providing new Ag-loaded dendritic cells. In this way CD4 T cell proliferation is regulated in a functional relationship to the amount of Ag, while allowing naive T cells to generate repertoire variety.
Resumo:
Radiation therapy is a treatment modality routinely used in cancer management so it is not unexpected that radiation-inducible promoters have emerged as an attractive tool for controlled gene therapy. The human tissue plasminogen activator gene promoter (t-PA) has been proposed as a candidate for radiogenic gene therapy, but has not been exploited to date. The purpose of this study was to evaluate the potential of this promoter to drive the expression of a reporter gene, the green fluorescent protein (GFP), in response to radiation exposure. METHODS: To investigate whether the promoter could be used for prostate cancer gene therapy, we initially transfected normal and malignant prostate cells. We then transfected HMEC-1 endothelial cells and ex vivo rat tail artery and monitored GFP levels using Western blotting following the delivery of single doses of ionizing radiation (2, 4, 6 Gy) to test whether the promoter could be used for vascular targeted gene therapy. RESULTS: The t-PA promoter induced GFP expression up to 6-fold in all cell types tested in response to radiation doses within the clinical range. CONCLUSIONS: These results suggest that the t-PA promoter may be incorporated into gene therapy strategies driving therapeutic transgenes in conjunction with radiation therapy.
Resumo:
The aims of this work were to investigate the conversion of a marine alga into hydroxyapatite (HA), and furthermore to design a composite bone tissue engineering scaffold comprising the synthesised HA within a porous bioresorbable polymer. The marine alga Phymatolithon calcareum, which exhibits a calcium carbonate honeycomb structure, with a natural architecture of interconnecting permeable pores (microporosity 4-11 mu m), provided the initial raw material for this study. The objective was to convert the alga into hydroxyapatite while maintaining its porous morphology using a sequential pyrolysis and chemical synthesis processes. Semi-quantitative XRD analysis of the post-hydrothermal material (pyrolised at 700-750 degrees C), indicated that the calcium phosphate (CaP) ceramic most likely consisted of a calcium carbonate macroporous lattice, with hydroxyapatite crystals on the surface of the macropores. Cell visibility (cytotoxicity) investigations of osteogenic cells were conducted on the CaP ceramic (i.e., the material post-hydrothermal analysis) which was found to be non-cytotoxic and displayed good biocompatibility when seeded with MG63 cells. Furthermore, a hot press scaffold fabrication technique was developed to produce a composite scaffold of CaP (derived from the marine alga) in a polycaprolactone (PCL) matrix. A salt leaching technique was further explored to introduce macroporosity to the structure (50-200 mu m). Analysis indicated that the scaffold contained both micro/macroporosity and mechanical strength, considered necessary for bone tissue engineering applications. (C) 2008 Published by Elsevier B.V.
Resumo:
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the detection of several synthetic glucocorticoids in kidney, muscle and hair samples of cattle after a single intramuscular injection is described. After a dichloromethane wash of the hair samples, analytes were released from the hair matrix by enzymatic digestion. Muscle samples were also digested enzymatically using proteinase, while kidney samples were deconjugated by Helix pomatia juice. These preliminary steps were followed by a methanol extraction and a solid phase extraction (SPE) clean up step for all matrices. Chromatographic separation was achieved on a Hypersil Hypercarb column and MS/MS data were obtained in the multiple reaction monitoring mode using negative electrospray ionization. The developed protocols were evaluated by assessing residue concentrations in muscle, kidney and hair samples of thirteen calves, treated with a particular intramuscular injection of glucocorticoid. The lowest residue levels were found in muscle samples (approximately 5% of the residue levels in kidney), while high residue levels were obtained in hair samples. Hair is an interesting matrix since the sampling is non-invasive and the drugs may stay incorporated for a longer period of time. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The use of microbeam approaches has been a major advance in probing the relevance of bystander and adaptive responses in cell and tissue models. Our own studies at the Gray Cancer Institute have used both a charged particle microbeam, producing protons and helium ions and a soft X-ray microprobe, delivering focused carbon-K, aluminium-K and titanium-K soft X-rays. Using these techniques we have been able to build up a comprehensive picture of the underlying differences between bystander responses and direct effects in cell and tissue-like models. What is now clear is that bystander dose-response relationships, the underlying mechanisms of action and the targets involved are not the same as those observed for direct irradiation of DNA in the nucleus. Our recent studies have shown bystander responses even when radiation is deposited away from the nucleus in cytoplasmic targets. Also the interaction between bystander and adaptive responses may be a complex one related to dose, number of cells targeted and time interval.
Resumo:
Tissue-implanted ultra-high frequency (UHF) radio devices are being employed in both humans and animals for telemetry and telecommand applications, This paper describes the experimental measurement and electromagnetic modeling of propagation from 418-MHz and 916.5-MHz sources placed in the human vagina. Whole-body homogeneous and semi-segmented software models were constructed using data from the Visible Human Project. Bodyworn radiation efficiencies for a vaginally placed 418-MHz source were calculated using finite-difference time-domain and ranged between 1.6% and 3.4% (corresponding to net body losses of between 14.7 and 18.0 dB), Greater losses were encountered at 916.5 MHz, with efficiencies between 0.36% and 0.46% (net body loss ranging between 23.4 and 24.4 dB), Practical measurements were in good agreement with simulations, to within 2 dB at 418 MHz and 3 dB at 916.5 MHz. The degree of tissue-segmentation for whole-body models was found to have a minimal effect on calculated azimuthal radiation patterns and bodyworn radiation efficiency, provided the region surrounding the implanted source was sufficiently detailed.