932 resultados para Tire Loads.
Resumo:
The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.
Resumo:
Interference fits are used extensively in aircraft structural joints because of their improved fatigue performance. Recent advances in analysis of these joints have increased understanding of the nonlinear load-contact and load-interfacial slip variations in these joints. Experimental work in these problems is lacking due to difficulties in determining partial contact and partial slip along the pin-hole interface. In this paper, an experimental procedure is enumerated for determining load-contact relations in interference/clearance fits, using photoelastic models and applying a technique for detecting progress of separation/contact up to predetermined locations. The study incorporates a detailed procedure for model making, controlling interference, locating break of contact up to known locations around the interface, estimating optically the degree of interference, determining interfacial friction and evaluating stresses in the sheet. Experiments, simulating joints in large sheets, were carried out under both pin and plate loads. The present studies provide load-separation behavior in interference joint with finite interfacial friction.
Resumo:
The plane problem of two dissimilar materials, bonded together and containing a crack along their common interface, which were subjected to a biaxial load at infinity, is examined by giving a closed-form expression for the first stress invariant of the normal stresses, which is equally valid everywhere, near to, and far from, the crack-tip region. This exact expression for the first-stress invariant is compared by constructing the respective isopachic-fringe patterns, to the approximate expression with non-singular terms, due to the biaxiality factor, for the same quantity. Significant differences between respective isopachic-patterns were found and their dependence on the elastic properties of both materials and the applied loads was demonstrated. The relative errors between the computedK I - andK II -components by using the approximate expression for the first stress-invariant and the accurate one, derived from closed-form solution along either isopachic-fringes or along circles and radii from the crack-tip have been given, indicating in some cases large discrepancies between exact and approximate solutions.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
Loss of nitrogen in deep drainage from agriculture is an important issue for environmental and economic reasons, but limited field data is available for tropical crops. In this study, nitrogen (N) loads leaving the root zone of two major humid tropical crops in Australia, sugarcane and bananas, were measured. The two field sites, 57 km apart, had a similar soil type (a well drained Dermosol) and rainfall (∼2700 mm year -1) but contrasting crops and management. A sugarcane crop in a commercial field received 136-148 kg N ha -1 year -1 applied in one application each year and was monitored for 3 years (first to third ratoon crops). N treatments of 0-600 kg ha -1 year -1 were applied to a plant and following ratoon crop of bananas. N was applied as urea throughout the growing season in irrigation water through mini-sprinklers. Low-suction lysimeters were installed at a depth of 1 m under both crops to monitor loads of N in deep drainage. Drainage at 1 m depth in the sugarcane crops was 22-37% of rainfall. Under bananas, drainage in the row was 65% of rainfall plus irrigation for the plant crop, and 37% for the ratoon. Nitrogen leaching loads were low under sugarcane (<1-9 kg ha -1 year -1) possibly reflecting the N fertiliser applications being reasonably matched to crop requirements and at least 26 days between fertiliser application and deep drainage. Under bananas, there were large loads of N in deep drainage when N application rates were in excess of plant demand, even when applied fortnightly. The deep drainage loss of N attributable to N fertiliser, calculated by subtracting the loss from unfertilised plots, was 246 and 641 kg ha -1 over 2 crop cycles, which was equivalent to 37 and 63% of the fertiliser application for treatments receiving 710 and 1065 kg ha -1, respectively. Those rates of fertiliser application resulted in soil acidification to a depth of 0.6 m by as much as 0.6 of a unit at 0.1-0.2 m depth. The higher leaching losses from bananas indicated that they should be a priority for improved N management. Crown Copyright © 2012.
Resumo:
Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity, and whilst the risk of progression appears to be biomechanically mediated (larger deformities are more likely to progress), the detailed biomechanical mechanisms driving progression are not well understood. Gravitational forces in the upright position are the primary sustained loads experienced by the spine. In scoliosis they are asymmetrical, generating moments about the spinal joints which may promote asymmetrical growth and deformity progression. Using 3D imaging modalities to estimate segmental torso masses allows the gravitational loading on the scoliotic spine to be determined. The resulting distribution of joint moments aids understanding of the mechanics of scoliosis progression. Methods Existing low-dose CT scans were used to estimate torso segment masses and joint moments for 20 female scoliosis patients. Intervertebral joint moments at each vertebral level were found by summing the moments of each of the torso segment masses above the required joint. Results The patients’ mean age was 15.3 years (SD 2.3; range 11.9 – 22.3 years); mean thoracic major Cobb angle 52° (SD 5.9°; range 42°-63°) and mean weight 57.5 kg (SD 11.5 kg; range 41 – 84.7 kg). Joint moments of up to 7 Nm were estimated at the apical level. No significant correlation was found between the patients’ major Cobb angles and apical joint moments. Conclusions Patients with larger Cobb angles do not necessarily have higher joint moments, and curve shape is an important determinant of joint moment distribution. These findings may help to explain the variations in progression between individual patients. This study suggests that substantial corrective forces are required of either internal instrumentation or orthoses to effectively counter the gravity-induced moments acting to deform the spinal joints of idiopathic scoliosis patients.
Resumo:
The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.
Resumo:
Concerns about excessive sediment loads entering the Great Barrier Reef (GBR) lagoon in Australia have led to a focus on improving ground cover in grazing lands. Ground cover has been identified as an important factor in reducing sediment loads, but improving ground cover has been difficult for reef stakeholders in major catchments of the GBR. To provide better information an optimising linear programming model based on paddock scale information in conjunction with land type mapping was developed for the Fitzroy, the largest of the GBR catchments. This identifies at a catchment scale which land types allow the most sediment reduction to be achieved at least cost. The results suggest that from the five land types modelled, the lower productivity land types present the cheapest option for sediment reductions. The study allows more informed decision making for natural resource management organisations to target investments. The analysis highlights the importance of efficient allocation of natural resource management funds in achieving sediment reductions through targeted land type investments. © 2012.
Resumo:
This paper presents the results of an experimental and numerical program to investigate the circular hollow section (CHS) beams, strengthened using Carbon Fibre Reinforced Polymer (CFRP) sheets. The circular hollow shaped steel beams bonded with different CFRP layer orientations were tested under four-point bending. The mid-span deflection, service load and failure load were recorded. The LHL (where L, first inner longitudinal layer, H, second hoop layer and L, third outer longitudinal layer) and LLH (where L, first inner longitudinal layer, L, second longitudinal layer and H, third outer hoop layer) layer oriented strengthened beams perform slightly better than HHL (where H, first inner hoop layer, H, second hoop layer and L, third outer longitudinal layer) layer oriented strengthened beams. The LHL and LLH layer oriented treated beams showed very similar structural behaviour. Numerical analyses were then conducted on the CFRP strengthened steel CHS beams. The validity of the models has been assessed by comparing the failure loads and mid-span deflections. The effects of various parameters such as bond length, section types, tensile modulus of CFRP, adhesive layer thickness and adhesive types have been studied.
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
The behaviour of laterally loaded piles is considerably influenced by the uncertainties in soil properties. Hence probabilistic models for assessment of allowable lateral load are necessary. Cone penetration test (CPT) data are often used to determine soil strength parameters, whereby the allowable lateral load of the pile is computed. In the present study, the maximum lateral displacement and moment of the pile are obtained based on the coefficient of subgrade reaction approach, considering the nonlinear soil behaviour in undrained clay. The coefficient of subgrade reaction is related to the undrained shear strength of soil, which can be obtained from CPT data. The soil medium is modelled as a one-dimensional random field along the depth, and it is described by the standard deviation and scale of fluctuation of the undrained shear strength of soil. Inherent soil variability, measurement uncertainty and transformation uncertainty are taken into consideration. The statistics of maximum lateral deflection and moment are obtained using the first-order, second-moment technique. Hasofer-Lind reliability indices for component and system failure criteria, based on the allowable lateral displacement and moment capacity of the pile section, are evaluated. The geotechnical database from the Konaseema site in India is used as a case example. It is shown that the reliability-based design approach for pile foundations, considering the spatial variability of soil, permits a rational choice of allowable lateral loads.
Resumo:
Wastewater analysis was used to examine prevalence and temporal trends in the use of two cathinones, methylone and mephedrone, in an urban population (>200,000 people) in South East Queensland, Australia. Wastewater samples were collected from the inlet of the sewage treatment plant that serviced the catchment from 2011 to 2013. Liquid chromatography coupled with tandem mass spectrometry was used to measure mephedrone and methylone in wastewater sample using direct injection mode. Mephedrone was not detected in any samples while methylone was detected in 45% of the samples. Daily mass loads of methylone were normalized to the population and used to evaluate methylone use in the catchment. Methylone mass loads peaked in 2012 but there was no clear temporal trend over the monitoring period. The prevalence of methylone use in the catchment was associated with the use of MDMA, the more popular analogue of methylone, as indicated by other complementary sources. Methylone use was stable in the study catchment during the monitoring period whereas mephedrone use has been declining after its peak in 2010. More research is needed on the pharmacokinetics of emerging illicit drugs to improve the applicability of wastewater analysis in monitoring their use in the population.
Resumo:
A study undertaken in Hervey Bay, Queensland, investigated the potential of creating an indigenous agribusiness opportunity based on the cultivation of indigenous Australian vegetables and herbs. Included were warrigal greens (WG) (Tetragonia tetragonioides), a green leafy vegetable and the herb sea celery (SC) (Apium prostratum); both traditional foods of the indigenous population and highly desirable to chefs wishing to add a unique, indigenous flavour to modern dishes. Packaging is important for shelf life extension and minimisation of postharvest losses in horticultural products. The ability of two packaging films to extend WG and SC shelf life was investigated. These were Antimisted Biaxial Oriented Polypropylene packaging film (BOPP) without perforations and Antifog BOPP Film with microperforations. Weight loss, packaging headspace composition, colour changes, sensory differences and microbial loads of packed WG and SC leaves were monitored to determine the impact of film oxygen transmission rate (OTR) and film water vapour transmission (WVT) on stored product quality. WG and SC were harvested, sanitised, packed and stored at 4°C for 16 days. Results indicated that the OTR and WVT rates of the package film significantly (PKLEINERDAN0.05) influenced the package headspace and weight loss, but did not affect product colour, total bacteria, yeast and mould populations during storage. There was no significant difference (PGROTERDAN0.05) in aroma, appearance, texture and flavour for WG and SC during storage. It was therefore concluded that a shelf life of 16 days at 4°C, where acceptable sensory properties were retained, was achievable for WG and SC in both packaging films.
Resumo:
Precise measurements of the ultrasonic velocities and thermal expansivities of amorphous Se80Te20 and Se90Te10 alloys are reported near the glass transition. The samples are produced by liquid quenching. The longitudinal and transverse velocities are measured at 10 MHz frequency using the McSkimin pulse superposition technique. The thermal expansivities,agr, are measured using a three-terminal capacitance bridge. Theagr-values show a sharp maximum near the glass transition temperature,T g. The ultrasonic velocities also show a large temperature derivative, dV/dT nearT g. The data are discussed in terms of existing theories of the glass transition. The continuous change inagr shows that the glass transition is not a first-order transition, as suggested by some theories. The samples are found to be deformed by small loads nearT g. The ultrasonic velocities and dV/dT have contributions arising from this deformation.
Resumo:
Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.