939 resultados para TiO2(110)
Resumo:
Several distinct, thin (2-7 cm), volcanic sand layers ("ashes") were recovered in the upper portions of Holes 842A and 842B. These holes were drilled 320 km west of the island of Hawaii on the outer side of the arch that surrounds the southern end of the Hawaiian chain. These layers are Pliocene to Pleistocene in age, graded, and contain fresh glass and mineral fragments (mainly olivine, plagioclase, and clinopyroxene) and tests of Pleistocene to Eocene radiolarians. The glass fragments are weakly vesicular and blocky to platy in shape. The glass and olivine fragments from individual layers have large ranges in composition (i.e, larger than expected for a single eruption). These features are inconsistent with an explosive eruption origin for the sands. The only other viable mechanism for transporting these sands hundreds of kilometers from their probable source, the Hawaiian Islands, is turbidity currents. These currents were probably related to several of the giant debris slides that were identified from Gloria sidescan images around the islands. These currents would have run over the ~500-m-high Hawaiian Arch on their way to Site 842. This indicates that the turbidity currents were at least 325 m thick. Paleomagnetic and biostratigraphic data allow the ages of the sands to be constrained and, thus, related to particular Hawaiian debris flows. These correlations were checked by comparing the compositions of the glasses from the sands with those of glasses and rocks from islands with debris flows directed toward Site 842. Good correlations were found for the 110-ka slide from Mauna Loa and the ~1.4-Ma slide from Lanai. The correlation with Kauai is poor, probably because the data base for that volcano is small. The low to moderate sulfur content of the sand glasses indicates that they were derived from moderately to strongly degassed lavas (shallow marine or subaerially erupted), which correlates well with the location of the landslide scars on the flanks of the Hawaiian volcanoes. The glass sands may have been formed by brecciation during the landslide events or spallation and granulation as lava erupted into shallow water.
Resumo:
The interaction of seawater with basalts in DSDP Hole 501 and the upper part of Hole 504B (Costa Rica Rift) produced oxidative alteration and a zonation of clay minerals along cracks. From rock edges to interiors in many cracks the following succession occurs, based on microscopic observations and microprobe analysis: iron hydroxides (red), "protoceladonite" (green), iddingsite (orange), and saponite (yellow). Clay minerals replace olivines and fill vesicles and cracks. Other secondary minerals are phillipsite, aragonite, and unidentified carbonates. Some glass is transformed to Mg-rich palagonite. Bulk rock chemistry is related to the composition of the secondary minerals. The zonation can be interpreted as a succession of postburial nonoxidative and oxidative diagenesis similar to that described in the Leg 34 basalts.
Resumo:
Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were discovered in Berriasian to Valanginian hemipelagic (shelfal) to eupelagic (deep-sea) sediments of the Wombat Plateau (Site 761), Argo Abyssal Plain (Sites 261, 765), southern Exmouth Plateau (Site 763), and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with trachyandesitic to rhyolitic ash as parent material is proved by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, slender zircon), and rock fragments, and by a vitroclastic ultra-fabric (smectitized glass shards). For the Argo Abyssal Plain, we can distinguish four types of bentonitic claystones of characteristic waxy appearance: (1) pure smectite bentonites, white to light gray, sharp basal contacts, and a homogeneous cryptocrystalline smectite matrix, (2) thin, greenish-gray bentonitic claystones having sharp upper and lower contacts, (3) gray-green bentonitic claystones mottled with background sedimentation and a distinct amount of terrigenous and pelagic detrital material, and (4) brick-red smectitic claystones having diffuse sedimentary contacts and a doubtful volcanic origin. For the other drill sites, we can distinguish between (1) pure bentonitic claystones similar in appearance and chemical composition to Type 1 of the Argo Abyssal Plain (except for gradual basal contacts) and (2) impure bentonitic claystones containing textures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components resulting from resedimentation or bioturbation. The ash layers were progressively altered (smectitized) during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally, completely homogenized to a pure smectite matrix without obvious relict structures. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau and, via turbidity currents, into the adjacent abyssal plains. The Wombat and Argo abyssal plain bentonites are interpreted, at least in parts, as proximal or distal ash turbidites, respectively.
Resumo:
Comprehensive geochronological and isotope-geochemical studies showed that the Late Quaternary Elbrus Volcano (Greater Caucasus) experienced long (approximately 200 ka) discrete evolution with protracted periods of igneous quiescence (approximately 50 ka) between large-scale eruptions. Volcanic activity of Elbrus is subdivided into three phases: Middle Neopleistocene (225-170 ka), Late Neopleistocene (110-70 ka), and Late Neopleistocene - Holocene (earlier than 35 ka). Petrogeochemical and isotope (Sr-Nd-Pb) signatures of Elbrus lavas point to their mantle-crustal origin. It was shown that hybrid parental magmas of the volcano formed due to mixing and/or contamination of deep-seated mantle melts by Paleozoic upper crustal material of the Greater Caucasus. Mantle reservoir that participated in genesis of Elbrus lavas as well as most other Neogene-Quaternary magmatic rocks of Caucasus was represented by the lower mantle "Caucasus" source. Primary melts generated by this source in composition corresponded to K-Na subalkali basalts with the following isotopic characteristics: 87Sr/86Sr = 0.7041+/-0.0001, e-Nd = +4.1+/-0.2, 147Sm/144Nd = 0.105-0.114, 206Pb/204Pb = 18.72, 207Pb/204Pb = 15.62, and 208Pb/204Pb = 38.78. Temporal evolution of isotope characteristics for lavas of the Elbrus Volcano is well described by a Sr-Nd mixing hyperbole between "Caucasus" source and estimated average composition of the Paleozoic upper crust of the Greater Caucasus. It was shown that, with time, proportions of mantle material in parental magmas of Elbrus gently increased: from ~60% at the Middle-Neopleistocene phase of activity to ~80% at the Late Neopleistocene - Holocene phase, which indicates an increase of activity of a deep-seated source at decreasing input of crustal melts or contamination with time. Unraveled evolution of the volcano with discrete eruption events, lacking signs of cessation of the Late Neopleistocene - Holocene phase, increasing contribution of the deep-seated mantle source in genesis of Elbrus lavas with time as deduced from isotope-geochemical data, as well as numerous geophysical and geological evidence indicate that Elbrus is a potentially active volcano and its eruptions may be resumed. Possible scenarios were proposed for evolution of the volcano, if its eruptive activity continued.
Resumo:
The book summarizes data on distribution and composition of sedimentary material suspended in waters of the Atlantic Ocean and its seas. Results of observations of Soviet and foreign expeditions are given. Distribution of suspended matter in sections across the ocean, as well as in the most studied seas are shown. New data on grain size, mineral and chemical composition of suspended matter are published. Summary of history of investigation of bottom sediments from the Atlantic Ocean from the first scientific cruises to the present is done. A brief description of sediment types in the ocean and a detailed description of Mediterranean Sea sediments are given.