997 resultados para Ti : sapphire


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different thermal treatments for the synthesis of BaTiO3 powder obtained through the Pechini method were studied. The synthesis of BaTiO3 starts at 150 °C by the thermal dehydration of organic precursors. The usual inevitable formation of barium carbonate during the thermal decomposition of the precursor could be retarded at lower calcination temperatures and optimized heating rates. The organic precursors were treated at temperatures between 200 and 400 °C. Then, the samples were calcined at 700 and 800 °C for 4 and 2 h, respectively. The resulting ceramic powders were characterized by gravimetric and differential thermal analyses, X-ray powder diffraction and infrared spectroscopy. It was found that depending on the heating rate and final temperature of the thermal treatment, high amounts of BaCO3 and TiO2 could be present due to the high concentration of organics in the final calcination step. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their high hardness and wear resistance, Si3N4 based ceramics are one of the most suitable cutting tool materials for machining cast iron, nickel alloys and hardened steels. However, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. This necessitates a process optimization when machining superalloys with Si3N4 based ceramic cutting tools. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of α-SiAlON tool in turning Ti-6Al-4V alloy at high cutting conditions, up to 250 m min-1, without coolant. Tool wear, failure modes and temperature were monitored to access the performance of the cutting tool. Test results showed that the performance of α-SiAl0N tool, in terms of tool life, at the cutting conditions investigated is relatively poor due probably to rapid notching and excessive chipping of the cutting edge. These facts are associated with adhesion and diffusion wear rate that tends to weaken the bond strength of the cutting tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a∼0.632) to Hexagonal (c/a∼1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction β-Ti / α-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The α phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume change is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released. © 2010 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control), 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks) quantitative real-time RT-PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks) all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses on effect of molybdenum on the Ti6Si2B formation in mechanically alloyed and hot-pressed Ti-xMo-22Si-11B (x= 2, 5, 7 and 10 at%) alloys. High-energy ball milling and hot pressing were utilized to produce homogeneous and dense materials, which were characterized by scanning electron microscopy, X-ray diffraction, electron dispersive spectrometry, and Vickers hardness. The excessive agglomeration during milling was more pronounced in Moricher powders, which was minimized with the formation of brittle phases. Hot pressing of mechanically alloyed Ti-xMo-22Si-11B powders produced dense samples containing lower pore amounts than 1%. Ti6Si2B was formed in microstructure of the hot-pressed Ti-2Mo-22Si-11B alloy only. In Mo-richer quaternary alloys, the Ti3Si and Ti5Si3 phases were preferentially formed during hot pressing. Oppositely to the ternary phase, the Ti3Si phase dissolved a significant Mo amount. Vickers hardness values were reduced in hot-pressed Ti-xMo-22Si-11B alloys containing larger Mo amounts, which were dissolved preferentially in Ti solid solution. © (2012) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys of Ti-Si-B system were manufactured by blended elemental powder method using Ti, Si and B powders as starting materials. It was found that uniaxial and isostatic pressing followed by hot pressing at around 1000°C, for 20 minutes, provided good densification of such alloys. The physicochemical studies were performed by means of scanning electron microscopy, X-ray diffraction, atomic force microscopy and microindentation/wear tests. The investigations revealed a multiphase microstructure formed mainly by α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. The phase transformations after pressureless sintering at 1200°C was also studied by X-ray diffraction for the Ti-18Si-6B composition. As stated in some other researches, these intermetallics in the α-titanium matrix provide high wear resistance and hardness, with the best wear rate of 0.2 mm3/N.m and the highest hardness of around 1300 HV. © (2012) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the structural characterization of Ti-10Si-5B and Ti-20Si-10B (at-%) alloys produced by high-pressure assisted sintering. Sintering was performed in air at 1100 and 1200°C for 60 s using pressure levels of 5 GPa. Structural evaluation of sintered samples was conducted by means of scanning electron microscopy and energy dispersive spectrometry. Samples were successfully consolidated after sintering, which presented theoretical density values higher than 99%. The microstructures of the sintered Ti-10Si-5B and Ti-20Si-10B alloys revealed the presence of the TiSS, TiB, TiB2, Ti5Si3, Ti5Si4, TiSi, and TiSi2.phases. A small amount of Ti6Si2B was formed after high-pressure assisted sintering of the Ti-20Si-10B alloy (5GPa, 1100°C for 60 s) indicating that equilibrium structures were not achieved during short sintering times. No oxygen and carbon contamination was detected in structures of Ti-Si-B alloys after high-pressure sintering at 1100 and 1200°C without controlled atmosphere. © (2012) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to optimize the machining of Ti-6Al-4V alloy, by studying the chip formation, roughness and tool wear for different cooling conditions. The results were compared between cooling methods, minimal quantity of fluid (MQF) and flooding, and also without fluid for the tool H13A. The turning of Ti-6Al-4V has shown good results on roughness (0, 8μm) and tool life, which was 11% lower with MQF than with the flooding method. The tool wear causes variation of the shear angle, which promotes strength hardening of the chip. As a result, the machined surface could be damaged. The use of the cutting fluid helps to save the cutting edge and could reduce the strength hardening. Nevertheless, it could also facilitate the formation of built-up edge. The nucleation of alpha lamellar colonies can occur due to a combination of deformation rates and temperature, mainly when the flooding is used, but it's not conclusive. The lamellar colonies were also found with the MQF in some regions, however, this structure did not show hardness variation compared to equiaxial. For all this reasons, the machining parameters might be carefully chosen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate commercially pure titanium implant surfaces modified by laser beam (LS) and LS associated with sodium silicate (SS) deposition, and compare them with machined surface (MS) and dual acid-etching surfaces (AS) modified. Topographic characterization was performed by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDX), and by mean roughness measurement before surgery. Thirty rabbits received 60 implants in their right and left tibias. One implant of each surface in each tibia. The implants were removed by reverse torque for vivo biomechanical analysis at 30, 60, and 90 days postoperative. In addition, the surface of the implants removed at 30 days postoperative was analyzed by SEM-EDX. The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of LS and SS were statistically higher than AS and MS. At 30 days, values removal torque LS and SS groups showed a statistically significant difference (p < 0.05) when compared with MS and AS. At 60 days, groups LS and SS showed statistically significant difference (p < 0.05) when compared with MS. At 90 days, only group SS presented statistically higher (p < 0.05) in comparison with MS. The authors can conclude that physical chemistry properties and topographical of LS and SS implants increases bone-implant interaction and provides higher degree of osseointegration when compared with MS and AS. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca1+xCu3-xTi4O12 powders were synthesized by a conventional solid-state reaction. X-ray diffraction (XRD) was performed to verify the formation of cubic CaCu3Ti4O 12 (CCTO) and orthorhombic CaTiO3 (CTO) phases at long range. Rietveld refinements indicate that excess Ca atoms added to the Ca 1-xCu3-xTi4O12 (x = 1.0) composition segregated in a CaTiO3 secondary phase suggesting that solubility limit of Ca atoms in the CaCu3Ti4O12 lattice was reached for this system. The FE-SEM images show that the Ca 1+xCu3-xTi4O12 (0 < x < 3) powders are composed of several agglomerated particles with irregular morphology. X-ray absorption near-edge structure spectroscopy (XANES) spectra indicated [TiO5Vo z]-[TiO6] complex clusters in the CaCu3Ti4O12 structure which can be associated with oxygen vacancies (Vo z = V o x, Vo •, and Vo ••) whereas in the CaTiO3 powder, this analysis indicated [TiO6]-[TiO6] complex clusters in the structure. Ultraviolet-visible (UV-vis) spectra and photoluminescence (PL) measurements for the analyzed systems revealed structural defects such as oxygen vacancies, distortions, and/or strains in CaCu3Ti4O12 and CaTiO3 lattices, respectively. © 2012 The American Ceramic Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes the synthesis, characterization and photocatalytic potential of Ti oxide nanostructures of various morphologies and crystalline phases that were synthesized from 4 different precursors by the alkaline hydrothermal method. The materials were characterized by mainly X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA) and X-ray absorption spectroscopy (XAS). Also, photocatalytic potential was assessed by rhodamine B photodegradation. The materials obtained from peroxytitanium complexes (PTCs) exhibited a strong dependence on the concentration of KOH ([KOH]) used for synthesis. The pre-formed sheets of the PTCs were critical to the formation of nanostructures such as nanoribbons, and they were also compatible with the rolling up process, which can be utilized to form structures such as nanorods, nanowires or nanotubes. In the rhodamine photodegradation tests, TiO2 anatase nanostructures with six-coor inated Ti were more effective than the titanate ones (five-coordinated), despite having a smaller surface area and fewer OH groups. The lower photoactivity of the titanates was attributed to the presence of five-coordinated titanium species (TiO5), which may act as electron-hole recombination centers. Furthermore, the material with a mixture of TiO2/titanate was shown to be promising for photocatalytic applications. © 2013 by American Scientific Publishers.